![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmmtri | Structured version Visualization version GIF version |
Description: The triangle inequality for the norm of a subtraction. (Contributed by NM, 27-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
nmmtri.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
nmmtri | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf.n | . . 3 ⊢ 𝑁 = (norm‘𝐺) | |
2 | nmf.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
3 | nmmtri.m | . . 3 ⊢ − = (-g‘𝐺) | |
4 | eqid 2734 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
5 | 1, 2, 3, 4 | ngpds 24632 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(dist‘𝐺)𝐵) = (𝑁‘(𝐴 − 𝐵))) |
6 | ngpms 24628 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
7 | 6 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ MetSp) |
8 | simp2 1136 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
9 | simp3 1137 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
10 | ngpgrp 24627 | . . . . . 6 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
11 | eqid 2734 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
12 | 2, 11 | grpidcl 18995 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → (0g‘𝐺) ∈ 𝑋) |
14 | 13 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (0g‘𝐺) ∈ 𝑋) |
15 | 2, 4 | mstri3 24496 | . . . 4 ⊢ ((𝐺 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋)) → (𝐴(dist‘𝐺)𝐵) ≤ ((𝐴(dist‘𝐺)(0g‘𝐺)) + (𝐵(dist‘𝐺)(0g‘𝐺)))) |
16 | 7, 8, 9, 14, 15 | syl13anc 1371 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(dist‘𝐺)𝐵) ≤ ((𝐴(dist‘𝐺)(0g‘𝐺)) + (𝐵(dist‘𝐺)(0g‘𝐺)))) |
17 | 1, 2, 11, 4 | nmval 24617 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴(dist‘𝐺)(0g‘𝐺))) |
18 | 17 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴(dist‘𝐺)(0g‘𝐺))) |
19 | 1, 2, 11, 4 | nmval 24617 | . . . . 5 ⊢ (𝐵 ∈ 𝑋 → (𝑁‘𝐵) = (𝐵(dist‘𝐺)(0g‘𝐺))) |
20 | 19 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝐵(dist‘𝐺)(0g‘𝐺))) |
21 | 18, 20 | oveq12d 7448 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘𝐵)) = ((𝐴(dist‘𝐺)(0g‘𝐺)) + (𝐵(dist‘𝐺)(0g‘𝐺)))) |
22 | 16, 21 | breqtrrd 5175 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(dist‘𝐺)𝐵) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
23 | 5, 22 | eqbrtrrd 5171 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 + caddc 11155 ≤ cle 11293 Basecbs 17244 distcds 17306 0gc0g 17485 Grpcgrp 18963 -gcsg 18965 MetSpcms 24343 normcnm 24604 NrmGrpcngp 24605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-0g 17487 df-topgen 17489 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-xms 24345 df-ms 24346 df-nm 24610 df-ngp 24611 |
This theorem is referenced by: nmtri 24654 ngpi 24656 tngngp 24690 |
Copyright terms: Public domain | W3C validator |