| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocv0 | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvz.v | ⊢ 𝑉 = (Base‘𝑊) |
| ocvz.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocv0 | ⊢ ( ⊥ ‘∅) = 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4348 | . . 3 ⊢ ∅ ⊆ 𝑉 | |
| 2 | ocvz.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2730 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2730 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 6 | ocvz.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 7 | 2, 3, 4, 5, 6 | ocvval 21597 | . . 3 ⊢ (∅ ⊆ 𝑉 → ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) |
| 8 | 1, 7 | ax-mp 5 | . 2 ⊢ ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
| 9 | ral0 4461 | . . . 4 ⊢ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) | |
| 10 | 9 | rgenw 3049 | . . 3 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) |
| 11 | rabid2 3426 | . . 3 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) | |
| 12 | 10, 11 | mpbir 231 | . 2 ⊢ 𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
| 13 | 8, 12 | eqtr4i 2756 | 1 ⊢ ( ⊥ ‘∅) = 𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∀wral 3045 {crab 3393 ⊆ wss 3900 ∅c0 4281 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 Scalarcsca 17156 ·𝑖cip 17158 0gc0g 17335 ocvcocv 21590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-ocv 21593 |
| This theorem is referenced by: ocvz 21608 css1 21620 |
| Copyright terms: Public domain | W3C validator |