MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocv0 Structured version   Visualization version   GIF version

Theorem ocv0 21586
Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
ocvz.v 𝑉 = (Base‘𝑊)
ocvz.o = (ocv‘𝑊)
Assertion
Ref Expression
ocv0 ( ‘∅) = 𝑉

Proof of Theorem ocv0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4363 . . 3 ∅ ⊆ 𝑉
2 ocvz.v . . . 4 𝑉 = (Base‘𝑊)
3 eqid 2729 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
4 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 ocvz.o . . . 4 = (ocv‘𝑊)
72, 3, 4, 5, 6ocvval 21576 . . 3 (∅ ⊆ 𝑉 → ( ‘∅) = {𝑥𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
81, 7ax-mp 5 . 2 ( ‘∅) = {𝑥𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
9 ral0 4476 . . . 4 𝑦 ∈ ∅ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))
109rgenw 3048 . . 3 𝑥𝑉𝑦 ∈ ∅ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))
11 rabid2 3439 . . 3 (𝑉 = {𝑥𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑥𝑉𝑦 ∈ ∅ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
1210, 11mpbir 231 . 2 𝑉 = {𝑥𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
138, 12eqtr4i 2755 1 ( ‘∅) = 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wral 3044  {crab 3405  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223  ·𝑖cip 17225  0gc0g 17402  ocvcocv 21569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-ocv 21572
This theorem is referenced by:  ocvz  21587  css1  21599
  Copyright terms: Public domain W3C validator