![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocv0 | Structured version Visualization version GIF version |
Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
ocvz.v | β’ π = (Baseβπ) |
ocvz.o | β’ β₯ = (ocvβπ) |
Ref | Expression |
---|---|
ocv0 | β’ ( β₯ ββ ) = π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4357 | . . 3 β’ β β π | |
2 | ocvz.v | . . . 4 β’ π = (Baseβπ) | |
3 | eqid 2733 | . . . 4 β’ (Β·πβπ) = (Β·πβπ) | |
4 | eqid 2733 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
5 | eqid 2733 | . . . 4 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
6 | ocvz.o | . . . 4 β’ β₯ = (ocvβπ) | |
7 | 2, 3, 4, 5, 6 | ocvval 21087 | . . 3 β’ (β β π β ( β₯ ββ ) = {π₯ β π β£ βπ¦ β β (π₯(Β·πβπ)π¦) = (0gβ(Scalarβπ))}) |
8 | 1, 7 | ax-mp 5 | . 2 β’ ( β₯ ββ ) = {π₯ β π β£ βπ¦ β β (π₯(Β·πβπ)π¦) = (0gβ(Scalarβπ))} |
9 | ral0 4471 | . . . 4 β’ βπ¦ β β (π₯(Β·πβπ)π¦) = (0gβ(Scalarβπ)) | |
10 | 9 | rgenw 3065 | . . 3 β’ βπ₯ β π βπ¦ β β (π₯(Β·πβπ)π¦) = (0gβ(Scalarβπ)) |
11 | rabid2 3435 | . . 3 β’ (π = {π₯ β π β£ βπ¦ β β (π₯(Β·πβπ)π¦) = (0gβ(Scalarβπ))} β βπ₯ β π βπ¦ β β (π₯(Β·πβπ)π¦) = (0gβ(Scalarβπ))) | |
12 | 10, 11 | mpbir 230 | . 2 β’ π = {π₯ β π β£ βπ¦ β β (π₯(Β·πβπ)π¦) = (0gβ(Scalarβπ))} |
13 | 8, 12 | eqtr4i 2764 | 1 β’ ( β₯ ββ ) = π |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 βwral 3061 {crab 3406 β wss 3911 β c0 4283 βcfv 6497 (class class class)co 7358 Basecbs 17088 Scalarcsca 17141 Β·πcip 17143 0gc0g 17326 ocvcocv 21080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-ov 7361 df-ocv 21083 |
This theorem is referenced by: ocvz 21098 css1 21110 |
Copyright terms: Public domain | W3C validator |