Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ocv0 | Structured version Visualization version GIF version |
Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
ocvz.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvz.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocv0 | ⊢ ( ⊥ ‘∅) = 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ 𝑉 | |
2 | ocvz.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
4 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2738 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
6 | ocvz.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
7 | 2, 3, 4, 5, 6 | ocvval 20784 | . . 3 ⊢ (∅ ⊆ 𝑉 → ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) |
8 | 1, 7 | ax-mp 5 | . 2 ⊢ ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
9 | ral0 4440 | . . . 4 ⊢ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) | |
10 | 9 | rgenw 3075 | . . 3 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) |
11 | rabid2 3307 | . . 3 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) | |
12 | 10, 11 | mpbir 230 | . 2 ⊢ 𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
13 | 8, 12 | eqtr4i 2769 | 1 ⊢ ( ⊥ ‘∅) = 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∀wral 3063 {crab 3067 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑖cip 16893 0gc0g 17067 ocvcocv 20777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-ocv 20780 |
This theorem is referenced by: ocvz 20795 css1 20807 |
Copyright terms: Public domain | W3C validator |