| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocv0 | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvz.v | ⊢ 𝑉 = (Base‘𝑊) |
| ocvz.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocv0 | ⊢ ( ⊥ ‘∅) = 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4375 | . . 3 ⊢ ∅ ⊆ 𝑉 | |
| 2 | ocvz.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2735 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2735 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 6 | ocvz.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 7 | 2, 3, 4, 5, 6 | ocvval 21627 | . . 3 ⊢ (∅ ⊆ 𝑉 → ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) |
| 8 | 1, 7 | ax-mp 5 | . 2 ⊢ ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
| 9 | ral0 4488 | . . . 4 ⊢ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) | |
| 10 | 9 | rgenw 3055 | . . 3 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) |
| 11 | rabid2 3449 | . . 3 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) | |
| 12 | 10, 11 | mpbir 231 | . 2 ⊢ 𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
| 13 | 8, 12 | eqtr4i 2761 | 1 ⊢ ( ⊥ ‘∅) = 𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3051 {crab 3415 ⊆ wss 3926 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Scalarcsca 17274 ·𝑖cip 17276 0gc0g 17453 ocvcocv 21620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-ocv 21623 |
| This theorem is referenced by: ocvz 21638 css1 21650 |
| Copyright terms: Public domain | W3C validator |