![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocv0 | Structured version Visualization version GIF version |
Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
ocvz.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvz.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocv0 | ⊢ ( ⊥ ‘∅) = 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝑉 | |
2 | ocvz.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | eqid 2740 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
4 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2740 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
6 | ocvz.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
7 | 2, 3, 4, 5, 6 | ocvval 21708 | . . 3 ⊢ (∅ ⊆ 𝑉 → ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) |
8 | 1, 7 | ax-mp 5 | . 2 ⊢ ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
9 | ral0 4536 | . . . 4 ⊢ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) | |
10 | 9 | rgenw 3071 | . . 3 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) |
11 | rabid2 3478 | . . 3 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) | |
12 | 10, 11 | mpbir 231 | . 2 ⊢ 𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
13 | 8, 12 | eqtr4i 2771 | 1 ⊢ ( ⊥ ‘∅) = 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∀wral 3067 {crab 3443 ⊆ wss 3976 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑖cip 17316 0gc0g 17499 ocvcocv 21701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-ocv 21704 |
This theorem is referenced by: ocvz 21719 css1 21731 |
Copyright terms: Public domain | W3C validator |