MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvz Structured version   Visualization version   GIF version

Theorem ocvz 20456
Description: The orthocomplement of the zero subspace. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
ocvz.v 𝑉 = (Base‘𝑊)
ocvz.o = (ocv‘𝑊)
ocvz.z 0 = (0g𝑊)
Assertion
Ref Expression
ocvz (𝑊 ∈ PreHil → ( ‘{ 0 }) = 𝑉)

Proof of Theorem ocvz
StepHypRef Expression
1 phllmod 20408 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2 ocvz.z . . . . 5 0 = (0g𝑊)
3 eqid 2758 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
42, 3lsp0 19862 . . . 4 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 })
51, 4syl 17 . . 3 (𝑊 ∈ PreHil → ((LSpan‘𝑊)‘∅) = { 0 })
65fveq2d 6667 . 2 (𝑊 ∈ PreHil → ( ‘((LSpan‘𝑊)‘∅)) = ( ‘{ 0 }))
7 0ss 4295 . . . 4 ∅ ⊆ 𝑉
8 ocvz.v . . . . 5 𝑉 = (Base‘𝑊)
9 ocvz.o . . . . 5 = (ocv‘𝑊)
108, 9, 3ocvlsp 20454 . . . 4 ((𝑊 ∈ PreHil ∧ ∅ ⊆ 𝑉) → ( ‘((LSpan‘𝑊)‘∅)) = ( ‘∅))
117, 10mpan2 690 . . 3 (𝑊 ∈ PreHil → ( ‘((LSpan‘𝑊)‘∅)) = ( ‘∅))
128, 9ocv0 20455 . . 3 ( ‘∅) = 𝑉
1311, 12eqtrdi 2809 . 2 (𝑊 ∈ PreHil → ( ‘((LSpan‘𝑊)‘∅)) = 𝑉)
146, 13eqtr3d 2795 1 (𝑊 ∈ PreHil → ( ‘{ 0 }) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wss 3860  c0 4227  {csn 4525  cfv 6340  Basecbs 16554  0gc0g 16784  LModclmod 19715  LSpanclspn 19824  PreHilcphl 20402  ocvcocv 20438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-ip 16654  df-0g 16786  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-mhm 18035  df-grp 18185  df-minusg 18186  df-sbg 18187  df-ghm 18436  df-mgp 19321  df-ur 19333  df-ring 19380  df-oppr 19457  df-rnghom 19551  df-staf 19697  df-srng 19698  df-lmod 19717  df-lss 19785  df-lsp 19825  df-lmhm 19875  df-lvec 19956  df-sra 20025  df-rgmod 20026  df-phl 20404  df-ocv 20441
This theorem is referenced by:  obs2ocv  20505
  Copyright terms: Public domain W3C validator