MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvval Structured version   Visualization version   GIF version

Theorem ocvval 20784
Description: Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvval (𝑆𝑉 → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥, , ,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem ocvval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ocvfval.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6770 . . 3 𝑉 ∈ V
32elpw2 5264 . 2 (𝑆 ∈ 𝒫 𝑉𝑆𝑉)
4 ocvfval.i . . . . . 6 , = (·𝑖𝑊)
5 ocvfval.f . . . . . 6 𝐹 = (Scalar‘𝑊)
6 ocvfval.z . . . . . 6 0 = (0g𝐹)
7 ocvfval.o . . . . . 6 = (ocv‘𝑊)
81, 4, 5, 6, 7ocvfval 20783 . . . . 5 (𝑊 ∈ V → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
98fveq1d 6758 . . . 4 (𝑊 ∈ V → ( 𝑆) = ((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })‘𝑆))
10 raleq 3333 . . . . . 6 (𝑠 = 𝑆 → (∀𝑦𝑠 (𝑥 , 𝑦) = 0 ↔ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 ))
1110rabbidv 3404 . . . . 5 (𝑠 = 𝑆 → {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
12 eqid 2738 . . . . 5 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
132rabex 5251 . . . . 5 {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } ∈ V
1411, 12, 13fvmpt 6857 . . . 4 (𝑆 ∈ 𝒫 𝑉 → ((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })‘𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
159, 14sylan9eq 2799 . . 3 ((𝑊 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉) → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
16 0fv 6795 . . . . 5 (∅‘𝑆) = ∅
17 fvprc 6748 . . . . . . 7 𝑊 ∈ V → (ocv‘𝑊) = ∅)
187, 17eqtrid 2790 . . . . . 6 𝑊 ∈ V → = ∅)
1918fveq1d 6758 . . . . 5 𝑊 ∈ V → ( 𝑆) = (∅‘𝑆))
20 ssrab2 4009 . . . . . 6 {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } ⊆ 𝑉
21 fvprc 6748 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
221, 21eqtrid 2790 . . . . . 6 𝑊 ∈ V → 𝑉 = ∅)
23 sseq0 4330 . . . . . 6 (({𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } ⊆ 𝑉𝑉 = ∅) → {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } = ∅)
2420, 22, 23sylancr 586 . . . . 5 𝑊 ∈ V → {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } = ∅)
2516, 19, 243eqtr4a 2805 . . . 4 𝑊 ∈ V → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
2625adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉) → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
2715, 26pm2.61ian 808 . 2 (𝑆 ∈ 𝒫 𝑉 → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
283, 27sylbir 234 1 (𝑆𝑉 → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891  ·𝑖cip 16893  0gc0g 17067  ocvcocv 20777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-ocv 20780
This theorem is referenced by:  elocv  20785  ocv0  20794  csscld  24318  hlhilocv  39902
  Copyright terms: Public domain W3C validator