MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvval Structured version   Visualization version   GIF version

Theorem ocvval 21708
Description: Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvval (𝑆𝑉 → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥, , ,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem ocvval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ocvfval.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6934 . . 3 𝑉 ∈ V
32elpw2 5352 . 2 (𝑆 ∈ 𝒫 𝑉𝑆𝑉)
4 ocvfval.i . . . . . 6 , = (·𝑖𝑊)
5 ocvfval.f . . . . . 6 𝐹 = (Scalar‘𝑊)
6 ocvfval.z . . . . . 6 0 = (0g𝐹)
7 ocvfval.o . . . . . 6 = (ocv‘𝑊)
81, 4, 5, 6, 7ocvfval 21707 . . . . 5 (𝑊 ∈ V → = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
98fveq1d 6922 . . . 4 (𝑊 ∈ V → ( 𝑆) = ((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })‘𝑆))
10 raleq 3331 . . . . . 6 (𝑠 = 𝑆 → (∀𝑦𝑠 (𝑥 , 𝑦) = 0 ↔ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 ))
1110rabbidv 3451 . . . . 5 (𝑠 = 𝑆 → {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
12 eqid 2740 . . . . 5 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
132rabex 5357 . . . . 5 {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } ∈ V
1411, 12, 13fvmpt 7029 . . . 4 (𝑆 ∈ 𝒫 𝑉 → ((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })‘𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
159, 14sylan9eq 2800 . . 3 ((𝑊 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉) → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
16 0fv 6964 . . . . 5 (∅‘𝑆) = ∅
17 fvprc 6912 . . . . . . 7 𝑊 ∈ V → (ocv‘𝑊) = ∅)
187, 17eqtrid 2792 . . . . . 6 𝑊 ∈ V → = ∅)
1918fveq1d 6922 . . . . 5 𝑊 ∈ V → ( 𝑆) = (∅‘𝑆))
20 ssrab2 4103 . . . . . 6 {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } ⊆ 𝑉
21 fvprc 6912 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
221, 21eqtrid 2792 . . . . . 6 𝑊 ∈ V → 𝑉 = ∅)
23 sseq0 4426 . . . . . 6 (({𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } ⊆ 𝑉𝑉 = ∅) → {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } = ∅)
2420, 22, 23sylancr 586 . . . . 5 𝑊 ∈ V → {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 } = ∅)
2516, 19, 243eqtr4a 2806 . . . 4 𝑊 ∈ V → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
2625adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉) → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
2715, 26pm2.61ian 811 . 2 (𝑆 ∈ 𝒫 𝑉 → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
283, 27sylbir 235 1 (𝑆𝑉 → ( 𝑆) = {𝑥𝑉 ∣ ∀𝑦𝑆 (𝑥 , 𝑦) = 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622  cmpt 5249  cfv 6573  (class class class)co 7448  Basecbs 17258  Scalarcsca 17314  ·𝑖cip 17316  0gc0g 17499  ocvcocv 21701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-ocv 21704
This theorem is referenced by:  elocv  21709  ocv0  21718  csscld  25302  hlhilocv  41918
  Copyright terms: Public domain W3C validator