Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ocvlsp | Structured version Visualization version GIF version |
Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
ocvlsp.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvlsp.o | ⊢ ⊥ = (ocv‘𝑊) |
ocvlsp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
ocvlsp | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘(𝑁‘𝑆)) = ( ⊥ ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllmod 20942 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
2 | ocvlsp.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ocvlsp.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 2, 3 | lspssid 20354 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝑁‘𝑆)) |
5 | 1, 4 | sylan 580 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝑁‘𝑆)) |
6 | ocvlsp.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
7 | 6 | ocv2ss 20985 | . . 3 ⊢ (𝑆 ⊆ (𝑁‘𝑆) → ( ⊥ ‘(𝑁‘𝑆)) ⊆ ( ⊥ ‘𝑆)) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘(𝑁‘𝑆)) ⊆ ( ⊥ ‘𝑆)) |
9 | 2, 6 | ocvss 20982 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ⊆ 𝑉) |
11 | 2, 6 | ocvocv 20983 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆)))) |
12 | 10, 11 | syldan 591 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆)))) |
13 | 1 | adantr 481 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑊 ∈ LMod) |
14 | eqid 2736 | . . . . . . 7 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
15 | 2, 6, 14 | ocvlss 20984 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ (LSubSp‘𝑊)) |
16 | 10, 15 | syldan 591 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ (LSubSp‘𝑊)) |
17 | 2, 6 | ocvocv 20983 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
18 | 14, 3 | lspssp 20357 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ ( ⊥ ‘( ⊥ ‘𝑆)) ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) → (𝑁‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
19 | 13, 16, 17, 18 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑁‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
20 | 6 | ocv2ss 20985 | . . . 4 ⊢ ((𝑁‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘(𝑁‘𝑆))) |
21 | 19, 20 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘(𝑁‘𝑆))) |
22 | 12, 21 | sstrd 3942 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘(𝑁‘𝑆))) |
23 | 8, 22 | eqssd 3949 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘(𝑁‘𝑆)) = ( ⊥ ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ‘cfv 6480 Basecbs 17010 LModclmod 20230 LSubSpclss 20300 LSpanclspn 20340 PreHilcphl 20936 ocvcocv 20972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-2nd 7901 df-tpos 8113 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-grp 18677 df-ghm 18929 df-mgp 19817 df-ur 19834 df-ring 19881 df-oppr 19958 df-rnghom 20055 df-staf 20212 df-srng 20213 df-lmod 20232 df-lss 20301 df-lsp 20341 df-lmhm 20391 df-lvec 20472 df-sra 20541 df-rgmod 20542 df-phl 20938 df-ocv 20975 |
This theorem is referenced by: ocvz 20990 obselocv 21042 obslbs 21044 |
Copyright terms: Public domain | W3C validator |