MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlsp Structured version   Visualization version   GIF version

Theorem ocvlsp 20988
Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
ocvlsp.v 𝑉 = (Base‘𝑊)
ocvlsp.o = (ocv‘𝑊)
ocvlsp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
ocvlsp ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) = ( 𝑆))

Proof of Theorem ocvlsp
StepHypRef Expression
1 phllmod 20942 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2 ocvlsp.v . . . . 5 𝑉 = (Base‘𝑊)
3 ocvlsp.n . . . . 5 𝑁 = (LSpan‘𝑊)
42, 3lspssid 20354 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑉) → 𝑆 ⊆ (𝑁𝑆))
51, 4sylan 580 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ (𝑁𝑆))
6 ocvlsp.o . . . 4 = (ocv‘𝑊)
76ocv2ss 20985 . . 3 (𝑆 ⊆ (𝑁𝑆) → ( ‘(𝑁𝑆)) ⊆ ( 𝑆))
85, 7syl 17 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) ⊆ ( 𝑆))
92, 6ocvss 20982 . . . . 5 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
112, 6ocvocv 20983 . . . 4 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( 𝑆) ⊆ ( ‘( ‘( 𝑆))))
1210, 11syldan 591 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ ( ‘( ‘( 𝑆))))
131adantr 481 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
14 eqid 2736 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
152, 6, 14ocvlss 20984 . . . . . 6 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( ‘( 𝑆)) ∈ (LSubSp‘𝑊))
1610, 15syldan 591 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ∈ (LSubSp‘𝑊))
172, 6ocvocv 20983 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
1814, 3lspssp 20357 . . . . 5 ((𝑊 ∈ LMod ∧ ( ‘( 𝑆)) ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ ( ‘( 𝑆))) → (𝑁𝑆) ⊆ ( ‘( 𝑆)))
1913, 16, 17, 18syl3anc 1370 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑁𝑆) ⊆ ( ‘( 𝑆)))
206ocv2ss 20985 . . . 4 ((𝑁𝑆) ⊆ ( ‘( 𝑆)) → ( ‘( ‘( 𝑆))) ⊆ ( ‘(𝑁𝑆)))
2119, 20syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( ‘( 𝑆))) ⊆ ( ‘(𝑁𝑆)))
2212, 21sstrd 3942 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ ( ‘(𝑁𝑆)))
238, 22eqssd 3949 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) = ( 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wss 3898  cfv 6480  Basecbs 17010  LModclmod 20230  LSubSpclss 20300  LSpanclspn 20340  PreHilcphl 20936  ocvcocv 20972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-2nd 7901  df-tpos 8113  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-er 8570  df-map 8689  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-3 12139  df-4 12140  df-5 12141  df-6 12142  df-7 12143  df-8 12144  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-ip 17078  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-mhm 18528  df-grp 18677  df-ghm 18929  df-mgp 19817  df-ur 19834  df-ring 19881  df-oppr 19958  df-rnghom 20055  df-staf 20212  df-srng 20213  df-lmod 20232  df-lss 20301  df-lsp 20341  df-lmhm 20391  df-lvec 20472  df-sra 20541  df-rgmod 20542  df-phl 20938  df-ocv 20975
This theorem is referenced by:  ocvz  20990  obselocv  21042  obslbs  21044
  Copyright terms: Public domain W3C validator