MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlsp Structured version   Visualization version   GIF version

Theorem ocvlsp 21641
Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
ocvlsp.v 𝑉 = (Base‘𝑊)
ocvlsp.o = (ocv‘𝑊)
ocvlsp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
ocvlsp ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) = ( 𝑆))

Proof of Theorem ocvlsp
StepHypRef Expression
1 phllmod 21595 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2 ocvlsp.v . . . . 5 𝑉 = (Base‘𝑊)
3 ocvlsp.n . . . . 5 𝑁 = (LSpan‘𝑊)
42, 3lspssid 20947 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑉) → 𝑆 ⊆ (𝑁𝑆))
51, 4sylan 580 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ (𝑁𝑆))
6 ocvlsp.o . . . 4 = (ocv‘𝑊)
76ocv2ss 21638 . . 3 (𝑆 ⊆ (𝑁𝑆) → ( ‘(𝑁𝑆)) ⊆ ( 𝑆))
85, 7syl 17 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) ⊆ ( 𝑆))
92, 6ocvss 21635 . . . . 5 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
112, 6ocvocv 21636 . . . 4 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( 𝑆) ⊆ ( ‘( ‘( 𝑆))))
1210, 11syldan 591 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ ( ‘( ‘( 𝑆))))
131adantr 480 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
14 eqid 2736 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
152, 6, 14ocvlss 21637 . . . . . 6 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( ‘( 𝑆)) ∈ (LSubSp‘𝑊))
1610, 15syldan 591 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ∈ (LSubSp‘𝑊))
172, 6ocvocv 21636 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
1814, 3lspssp 20950 . . . . 5 ((𝑊 ∈ LMod ∧ ( ‘( 𝑆)) ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ ( ‘( 𝑆))) → (𝑁𝑆) ⊆ ( ‘( 𝑆)))
1913, 16, 17, 18syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑁𝑆) ⊆ ( ‘( 𝑆)))
206ocv2ss 21638 . . . 4 ((𝑁𝑆) ⊆ ( ‘( 𝑆)) → ( ‘( ‘( 𝑆))) ⊆ ( ‘(𝑁𝑆)))
2119, 20syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( ‘( 𝑆))) ⊆ ( ‘(𝑁𝑆)))
2212, 21sstrd 3974 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ ( ‘(𝑁𝑆)))
238, 22eqssd 3981 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) = ( 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3931  cfv 6536  Basecbs 17233  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933  PreHilcphl 21589  ocvcocv 21625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-rhm 20437  df-staf 20804  df-srng 20805  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-phl 21591  df-ocv 21628
This theorem is referenced by:  ocvz  21643  obselocv  21693  obslbs  21695
  Copyright terms: Public domain W3C validator