MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlsp Structured version   Visualization version   GIF version

Theorem ocvlsp 20365
Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
ocvlsp.v 𝑉 = (Base‘𝑊)
ocvlsp.o = (ocv‘𝑊)
ocvlsp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
ocvlsp ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) = ( 𝑆))

Proof of Theorem ocvlsp
StepHypRef Expression
1 phllmod 20319 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2 ocvlsp.v . . . . 5 𝑉 = (Base‘𝑊)
3 ocvlsp.n . . . . 5 𝑁 = (LSpan‘𝑊)
42, 3lspssid 19750 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑉) → 𝑆 ⊆ (𝑁𝑆))
51, 4sylan 583 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ (𝑁𝑆))
6 ocvlsp.o . . . 4 = (ocv‘𝑊)
76ocv2ss 20362 . . 3 (𝑆 ⊆ (𝑁𝑆) → ( ‘(𝑁𝑆)) ⊆ ( 𝑆))
85, 7syl 17 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) ⊆ ( 𝑆))
92, 6ocvss 20359 . . . . 5 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
112, 6ocvocv 20360 . . . 4 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( 𝑆) ⊆ ( ‘( ‘( 𝑆))))
1210, 11syldan 594 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ ( ‘( ‘( 𝑆))))
131adantr 484 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
14 eqid 2798 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
152, 6, 14ocvlss 20361 . . . . . 6 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( ‘( 𝑆)) ∈ (LSubSp‘𝑊))
1610, 15syldan 594 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ∈ (LSubSp‘𝑊))
172, 6ocvocv 20360 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
1814, 3lspssp 19753 . . . . 5 ((𝑊 ∈ LMod ∧ ( ‘( 𝑆)) ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ ( ‘( 𝑆))) → (𝑁𝑆) ⊆ ( ‘( 𝑆)))
1913, 16, 17, 18syl3anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑁𝑆) ⊆ ( ‘( 𝑆)))
206ocv2ss 20362 . . . 4 ((𝑁𝑆) ⊆ ( ‘( 𝑆)) → ( ‘( ‘( 𝑆))) ⊆ ( ‘(𝑁𝑆)))
2119, 20syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( ‘( 𝑆))) ⊆ ( ‘(𝑁𝑆)))
2212, 21sstrd 3925 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ ( ‘(𝑁𝑆)))
238, 22eqssd 3932 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) = ( 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wss 3881  cfv 6324  Basecbs 16475  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  PreHilcphl 20313  ocvcocv 20349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-rnghom 19463  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-phl 20315  df-ocv 20352
This theorem is referenced by:  ocvz  20367  obselocv  20417  obslbs  20419
  Copyright terms: Public domain W3C validator