MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlsp Structured version   Visualization version   GIF version

Theorem ocvlsp 20345
Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
ocvlsp.v 𝑉 = (Base‘𝑊)
ocvlsp.o = (ocv‘𝑊)
ocvlsp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
ocvlsp ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) = ( 𝑆))

Proof of Theorem ocvlsp
StepHypRef Expression
1 phllmod 20299 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
2 ocvlsp.v . . . . 5 𝑉 = (Base‘𝑊)
3 ocvlsp.n . . . . 5 𝑁 = (LSpan‘𝑊)
42, 3lspssid 19306 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑉) → 𝑆 ⊆ (𝑁𝑆))
51, 4sylan 576 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ (𝑁𝑆))
6 ocvlsp.o . . . 4 = (ocv‘𝑊)
76ocv2ss 20342 . . 3 (𝑆 ⊆ (𝑁𝑆) → ( ‘(𝑁𝑆)) ⊆ ( 𝑆))
85, 7syl 17 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) ⊆ ( 𝑆))
92, 6ocvss 20339 . . . . 5 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
112, 6ocvocv 20340 . . . 4 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( 𝑆) ⊆ ( ‘( ‘( 𝑆))))
1210, 11syldan 586 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ ( ‘( ‘( 𝑆))))
131adantr 473 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
14 eqid 2799 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
152, 6, 14ocvlss 20341 . . . . . 6 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → ( ‘( 𝑆)) ∈ (LSubSp‘𝑊))
1610, 15syldan 586 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( 𝑆)) ∈ (LSubSp‘𝑊))
172, 6ocvocv 20340 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
1814, 3lspssp 19309 . . . . 5 ((𝑊 ∈ LMod ∧ ( ‘( 𝑆)) ∈ (LSubSp‘𝑊) ∧ 𝑆 ⊆ ( ‘( 𝑆))) → (𝑁𝑆) ⊆ ( ‘( 𝑆)))
1913, 16, 17, 18syl3anc 1491 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑁𝑆) ⊆ ( ‘( 𝑆)))
206ocv2ss 20342 . . . 4 ((𝑁𝑆) ⊆ ( ‘( 𝑆)) → ( ‘( ‘( 𝑆))) ⊆ ( ‘(𝑁𝑆)))
2119, 20syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( ‘( 𝑆))) ⊆ ( ‘(𝑁𝑆)))
2212, 21sstrd 3808 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ ( ‘(𝑁𝑆)))
238, 22eqssd 3815 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘(𝑁𝑆)) = ( 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wss 3769  cfv 6101  Basecbs 16184  LModclmod 19181  LSubSpclss 19250  LSpanclspn 19292  PreHilcphl 20293  ocvcocv 20329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-grp 17741  df-ghm 17971  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-rnghom 19033  df-staf 19163  df-srng 19164  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lmhm 19343  df-lvec 19424  df-sra 19495  df-rgmod 19496  df-phl 20295  df-ocv 20332
This theorem is referenced by:  ocvz  20347  obselocv  20397  obslbs  20399
  Copyright terms: Public domain W3C validator