Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  succlg Structured version   Visualization version   GIF version

Theorem succlg 42011
Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
succlg ((𝐴𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴𝐵)

Proof of Theorem succlg
StepHypRef Expression
1 eleq2 2823 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ∈ ∅))
2 noel 4329 . . . . . 6 ¬ 𝐴 ∈ ∅
32pm2.21i 119 . . . . 5 (𝐴 ∈ ∅ → suc 𝐴𝐵)
41, 3syl6bi 253 . . . 4 (𝐵 = ∅ → (𝐴𝐵 → suc 𝐴𝐵))
54com12 32 . . 3 (𝐴𝐵 → (𝐵 = ∅ → suc 𝐴𝐵))
6 simpl 484 . . . . 5 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐴𝐵)
7 eldifi 4125 . . . . . . . . 9 (𝐶 ∈ (On ∖ 1o) → 𝐶 ∈ On)
87ad2antll 728 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐶 ∈ On)
9 omex 9634 . . . . . . . . . 10 ω ∈ V
10 limom 7866 . . . . . . . . . 10 Lim ω
119, 10pm3.2i 472 . . . . . . . . 9 (ω ∈ V ∧ Lim ω)
1211a1i 11 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (ω ∈ V ∧ Lim ω))
13 ondif1 8496 . . . . . . . . . 10 (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
1413simprbi 498 . . . . . . . . 9 (𝐶 ∈ (On ∖ 1o) → ∅ ∈ 𝐶)
1514ad2antll 728 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → ∅ ∈ 𝐶)
16 omlimcl2 41924 . . . . . . . 8 (((𝐶 ∈ On ∧ (ω ∈ V ∧ Lim ω)) ∧ ∅ ∈ 𝐶) → Lim (ω ·o 𝐶))
178, 12, 15, 16syl21anc 837 . . . . . . 7 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim (ω ·o 𝐶))
18 limeq 6373 . . . . . . . 8 (𝐵 = (ω ·o 𝐶) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶)))
1918ad2antrl 727 . . . . . . 7 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶)))
2017, 19mpbird 257 . . . . . 6 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim 𝐵)
21 limsuc 7833 . . . . . 6 (Lim 𝐵 → (𝐴𝐵 ↔ suc 𝐴𝐵))
2220, 21syl 17 . . . . 5 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (𝐴𝐵 ↔ suc 𝐴𝐵))
236, 22mpbid 231 . . . 4 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴𝐵)
2423ex 414 . . 3 (𝐴𝐵 → ((𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)) → suc 𝐴𝐵))
255, 24jaod 858 . 2 (𝐴𝐵 → ((𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴𝐵))
2625imp 408 1 ((𝐴𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  Vcvv 3475  cdif 3944  c0 4321  Oncon0 6361  Lim wlim 6362  suc csuc 6363  (class class class)co 7404  ωcom 7850  1oc1o 8454   ·o comu 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7720  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-omul 8466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator