| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > succlg | Structured version Visualization version GIF version | ||
| Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.) |
| Ref | Expression |
|---|---|
| succlg | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2820 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ∅)) | |
| 2 | noel 4285 | . . . . . 6 ⊢ ¬ 𝐴 ∈ ∅ | |
| 3 | 2 | pm2.21i 119 | . . . . 5 ⊢ (𝐴 ∈ ∅ → suc 𝐴 ∈ 𝐵) |
| 4 | 1, 3 | biimtrdi 253 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 ∈ 𝐵 → suc 𝐴 ∈ 𝐵)) |
| 5 | 4 | com12 32 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = ∅ → suc 𝐴 ∈ 𝐵)) |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐴 ∈ 𝐵) | |
| 7 | eldifi 4078 | . . . . . . . . 9 ⊢ (𝐶 ∈ (On ∖ 1o) → 𝐶 ∈ On) | |
| 8 | 7 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐶 ∈ On) |
| 9 | omex 9533 | . . . . . . . . . 10 ⊢ ω ∈ V | |
| 10 | limom 7812 | . . . . . . . . . 10 ⊢ Lim ω | |
| 11 | 9, 10 | pm3.2i 470 | . . . . . . . . 9 ⊢ (ω ∈ V ∧ Lim ω) |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (ω ∈ V ∧ Lim ω)) |
| 13 | ondif1 8416 | . . . . . . . . . 10 ⊢ (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) | |
| 14 | 13 | simprbi 496 | . . . . . . . . 9 ⊢ (𝐶 ∈ (On ∖ 1o) → ∅ ∈ 𝐶) |
| 15 | 14 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → ∅ ∈ 𝐶) |
| 16 | omlimcl2 43345 | . . . . . . . 8 ⊢ (((𝐶 ∈ On ∧ (ω ∈ V ∧ Lim ω)) ∧ ∅ ∈ 𝐶) → Lim (ω ·o 𝐶)) | |
| 17 | 8, 12, 15, 16 | syl21anc 837 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim (ω ·o 𝐶)) |
| 18 | limeq 6318 | . . . . . . . 8 ⊢ (𝐵 = (ω ·o 𝐶) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶))) | |
| 19 | 18 | ad2antrl 728 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶))) |
| 20 | 17, 19 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim 𝐵) |
| 21 | limsuc 7779 | . . . . . 6 ⊢ (Lim 𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
| 23 | 6, 22 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴 ∈ 𝐵) |
| 24 | 23 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)) → suc 𝐴 ∈ 𝐵)) |
| 25 | 5, 24 | jaod 859 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴 ∈ 𝐵)) |
| 26 | 25 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∅c0 4280 Oncon0 6306 Lim wlim 6307 suc csuc 6308 (class class class)co 7346 ωcom 7796 1oc1o 8378 ·o comu 8383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |