Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  succlg Structured version   Visualization version   GIF version

Theorem succlg 43431
Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
succlg ((𝐴𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴𝐵)

Proof of Theorem succlg
StepHypRef Expression
1 eleq2 2820 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ∈ ∅))
2 noel 4285 . . . . . 6 ¬ 𝐴 ∈ ∅
32pm2.21i 119 . . . . 5 (𝐴 ∈ ∅ → suc 𝐴𝐵)
41, 3biimtrdi 253 . . . 4 (𝐵 = ∅ → (𝐴𝐵 → suc 𝐴𝐵))
54com12 32 . . 3 (𝐴𝐵 → (𝐵 = ∅ → suc 𝐴𝐵))
6 simpl 482 . . . . 5 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐴𝐵)
7 eldifi 4078 . . . . . . . . 9 (𝐶 ∈ (On ∖ 1o) → 𝐶 ∈ On)
87ad2antll 729 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐶 ∈ On)
9 omex 9533 . . . . . . . . . 10 ω ∈ V
10 limom 7812 . . . . . . . . . 10 Lim ω
119, 10pm3.2i 470 . . . . . . . . 9 (ω ∈ V ∧ Lim ω)
1211a1i 11 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (ω ∈ V ∧ Lim ω))
13 ondif1 8416 . . . . . . . . . 10 (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
1413simprbi 496 . . . . . . . . 9 (𝐶 ∈ (On ∖ 1o) → ∅ ∈ 𝐶)
1514ad2antll 729 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → ∅ ∈ 𝐶)
16 omlimcl2 43345 . . . . . . . 8 (((𝐶 ∈ On ∧ (ω ∈ V ∧ Lim ω)) ∧ ∅ ∈ 𝐶) → Lim (ω ·o 𝐶))
178, 12, 15, 16syl21anc 837 . . . . . . 7 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim (ω ·o 𝐶))
18 limeq 6318 . . . . . . . 8 (𝐵 = (ω ·o 𝐶) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶)))
1918ad2antrl 728 . . . . . . 7 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶)))
2017, 19mpbird 257 . . . . . 6 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim 𝐵)
21 limsuc 7779 . . . . . 6 (Lim 𝐵 → (𝐴𝐵 ↔ suc 𝐴𝐵))
2220, 21syl 17 . . . . 5 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (𝐴𝐵 ↔ suc 𝐴𝐵))
236, 22mpbid 232 . . . 4 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴𝐵)
2423ex 412 . . 3 (𝐴𝐵 → ((𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)) → suc 𝐴𝐵))
255, 24jaod 859 . 2 (𝐴𝐵 → ((𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴𝐵))
2625imp 406 1 ((𝐴𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  c0 4280  Oncon0 6306  Lim wlim 6307  suc csuc 6308  (class class class)co 7346  ωcom 7796  1oc1o 8378   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator