Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  succlg Structured version   Visualization version   GIF version

Theorem succlg 43318
Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
succlg ((𝐴𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴𝐵)

Proof of Theorem succlg
StepHypRef Expression
1 eleq2 2828 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ∈ ∅))
2 noel 4344 . . . . . 6 ¬ 𝐴 ∈ ∅
32pm2.21i 119 . . . . 5 (𝐴 ∈ ∅ → suc 𝐴𝐵)
41, 3biimtrdi 253 . . . 4 (𝐵 = ∅ → (𝐴𝐵 → suc 𝐴𝐵))
54com12 32 . . 3 (𝐴𝐵 → (𝐵 = ∅ → suc 𝐴𝐵))
6 simpl 482 . . . . 5 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐴𝐵)
7 eldifi 4141 . . . . . . . . 9 (𝐶 ∈ (On ∖ 1o) → 𝐶 ∈ On)
87ad2antll 729 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐶 ∈ On)
9 omex 9681 . . . . . . . . . 10 ω ∈ V
10 limom 7903 . . . . . . . . . 10 Lim ω
119, 10pm3.2i 470 . . . . . . . . 9 (ω ∈ V ∧ Lim ω)
1211a1i 11 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (ω ∈ V ∧ Lim ω))
13 ondif1 8538 . . . . . . . . . 10 (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
1413simprbi 496 . . . . . . . . 9 (𝐶 ∈ (On ∖ 1o) → ∅ ∈ 𝐶)
1514ad2antll 729 . . . . . . . 8 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → ∅ ∈ 𝐶)
16 omlimcl2 43231 . . . . . . . 8 (((𝐶 ∈ On ∧ (ω ∈ V ∧ Lim ω)) ∧ ∅ ∈ 𝐶) → Lim (ω ·o 𝐶))
178, 12, 15, 16syl21anc 838 . . . . . . 7 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim (ω ·o 𝐶))
18 limeq 6398 . . . . . . . 8 (𝐵 = (ω ·o 𝐶) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶)))
1918ad2antrl 728 . . . . . . 7 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶)))
2017, 19mpbird 257 . . . . . 6 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim 𝐵)
21 limsuc 7870 . . . . . 6 (Lim 𝐵 → (𝐴𝐵 ↔ suc 𝐴𝐵))
2220, 21syl 17 . . . . 5 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (𝐴𝐵 ↔ suc 𝐴𝐵))
236, 22mpbid 232 . . . 4 ((𝐴𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴𝐵)
2423ex 412 . . 3 (𝐴𝐵 → ((𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)) → suc 𝐴𝐵))
255, 24jaod 859 . 2 (𝐴𝐵 → ((𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴𝐵))
2625imp 406 1 ((𝐴𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  c0 4339  Oncon0 6386  Lim wlim 6387  suc csuc 6388  (class class class)co 7431  ωcom 7887  1oc1o 8498   ·o comu 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator