| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > succlg | Structured version Visualization version GIF version | ||
| Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.) |
| Ref | Expression |
|---|---|
| succlg | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2824 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ∅)) | |
| 2 | noel 4318 | . . . . . 6 ⊢ ¬ 𝐴 ∈ ∅ | |
| 3 | 2 | pm2.21i 119 | . . . . 5 ⊢ (𝐴 ∈ ∅ → suc 𝐴 ∈ 𝐵) |
| 4 | 1, 3 | biimtrdi 253 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 ∈ 𝐵 → suc 𝐴 ∈ 𝐵)) |
| 5 | 4 | com12 32 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = ∅ → suc 𝐴 ∈ 𝐵)) |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐴 ∈ 𝐵) | |
| 7 | eldifi 4111 | . . . . . . . . 9 ⊢ (𝐶 ∈ (On ∖ 1o) → 𝐶 ∈ On) | |
| 8 | 7 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐶 ∈ On) |
| 9 | omex 9662 | . . . . . . . . . 10 ⊢ ω ∈ V | |
| 10 | limom 7882 | . . . . . . . . . 10 ⊢ Lim ω | |
| 11 | 9, 10 | pm3.2i 470 | . . . . . . . . 9 ⊢ (ω ∈ V ∧ Lim ω) |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (ω ∈ V ∧ Lim ω)) |
| 13 | ondif1 8518 | . . . . . . . . . 10 ⊢ (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) | |
| 14 | 13 | simprbi 496 | . . . . . . . . 9 ⊢ (𝐶 ∈ (On ∖ 1o) → ∅ ∈ 𝐶) |
| 15 | 14 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → ∅ ∈ 𝐶) |
| 16 | omlimcl2 43241 | . . . . . . . 8 ⊢ (((𝐶 ∈ On ∧ (ω ∈ V ∧ Lim ω)) ∧ ∅ ∈ 𝐶) → Lim (ω ·o 𝐶)) | |
| 17 | 8, 12, 15, 16 | syl21anc 837 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim (ω ·o 𝐶)) |
| 18 | limeq 6369 | . . . . . . . 8 ⊢ (𝐵 = (ω ·o 𝐶) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶))) | |
| 19 | 18 | ad2antrl 728 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶))) |
| 20 | 17, 19 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim 𝐵) |
| 21 | limsuc 7849 | . . . . . 6 ⊢ (Lim 𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
| 23 | 6, 22 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴 ∈ 𝐵) |
| 24 | 23 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)) → suc 𝐴 ∈ 𝐵)) |
| 25 | 5, 24 | jaod 859 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴 ∈ 𝐵)) |
| 26 | 25 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ∅c0 4313 Oncon0 6357 Lim wlim 6358 suc csuc 6359 (class class class)co 7410 ωcom 7866 1oc1o 8478 ·o comu 8483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |