![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > succlg | Structured version Visualization version GIF version |
Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.) |
Ref | Expression |
---|---|
succlg | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2823 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ∅)) | |
2 | noel 4329 | . . . . . 6 ⊢ ¬ 𝐴 ∈ ∅ | |
3 | 2 | pm2.21i 119 | . . . . 5 ⊢ (𝐴 ∈ ∅ → suc 𝐴 ∈ 𝐵) |
4 | 1, 3 | syl6bi 253 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 ∈ 𝐵 → suc 𝐴 ∈ 𝐵)) |
5 | 4 | com12 32 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = ∅ → suc 𝐴 ∈ 𝐵)) |
6 | simpl 484 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐴 ∈ 𝐵) | |
7 | eldifi 4125 | . . . . . . . . 9 ⊢ (𝐶 ∈ (On ∖ 1o) → 𝐶 ∈ On) | |
8 | 7 | ad2antll 728 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → 𝐶 ∈ On) |
9 | omex 9634 | . . . . . . . . . 10 ⊢ ω ∈ V | |
10 | limom 7866 | . . . . . . . . . 10 ⊢ Lim ω | |
11 | 9, 10 | pm3.2i 472 | . . . . . . . . 9 ⊢ (ω ∈ V ∧ Lim ω) |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (ω ∈ V ∧ Lim ω)) |
13 | ondif1 8496 | . . . . . . . . . 10 ⊢ (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) | |
14 | 13 | simprbi 498 | . . . . . . . . 9 ⊢ (𝐶 ∈ (On ∖ 1o) → ∅ ∈ 𝐶) |
15 | 14 | ad2antll 728 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → ∅ ∈ 𝐶) |
16 | omlimcl2 41924 | . . . . . . . 8 ⊢ (((𝐶 ∈ On ∧ (ω ∈ V ∧ Lim ω)) ∧ ∅ ∈ 𝐶) → Lim (ω ·o 𝐶)) | |
17 | 8, 12, 15, 16 | syl21anc 837 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim (ω ·o 𝐶)) |
18 | limeq 6373 | . . . . . . . 8 ⊢ (𝐵 = (ω ·o 𝐶) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶))) | |
19 | 18 | ad2antrl 727 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (Lim 𝐵 ↔ Lim (ω ·o 𝐶))) |
20 | 17, 19 | mpbird 257 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → Lim 𝐵) |
21 | limsuc 7833 | . . . . . 6 ⊢ (Lim 𝐵 → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
23 | 6, 22 | mpbid 231 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴 ∈ 𝐵) |
24 | 23 | ex 414 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)) → suc 𝐴 ∈ 𝐵)) |
25 | 5, 24 | jaod 858 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o))) → suc 𝐴 ∈ 𝐵)) |
26 | 25 | imp 408 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∖ cdif 3944 ∅c0 4321 Oncon0 6361 Lim wlim 6362 suc csuc 6363 (class class class)co 7404 ωcom 7850 1oc1o 8454 ·o comu 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-omul 8466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |