![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnflem2 | Structured version Visualization version GIF version |
Description: Lemma for cantnf 9637. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
cantnf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) |
cantnf.s | ⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) |
cantnf.e | ⊢ (𝜑 → ∅ ∈ 𝐶) |
Ref | Expression |
---|---|
cantnflem2 | ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
2 | cantnfs.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ On) | |
3 | oecl 8487 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | |
4 | 1, 2, 3 | syl2anc 585 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
5 | cantnf.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) | |
6 | onelon 6346 | . . . . . . . . 9 ⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴 ↑o 𝐵)) → 𝐶 ∈ On) | |
7 | 4, 5, 6 | syl2anc 585 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ On) |
8 | cantnf.e | . . . . . . . 8 ⊢ (𝜑 → ∅ ∈ 𝐶) | |
9 | ondif1 8451 | . . . . . . . 8 ⊢ (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) | |
10 | 7, 8, 9 | sylanbrc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (On ∖ 1o)) |
11 | 10 | eldifbd 3927 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐶 ∈ 1o) |
12 | ssel 3941 | . . . . . . 7 ⊢ ((𝐴 ↑o 𝐵) ⊆ 1o → (𝐶 ∈ (𝐴 ↑o 𝐵) → 𝐶 ∈ 1o)) | |
13 | 5, 12 | syl5com 31 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ↑o 𝐵) ⊆ 1o → 𝐶 ∈ 1o)) |
14 | 11, 13 | mtod 197 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 ↑o 𝐵) ⊆ 1o) |
15 | oe0m 8468 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (∅ ↑o 𝐵) = (1o ∖ 𝐵)) | |
16 | 2, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (∅ ↑o 𝐵) = (1o ∖ 𝐵)) |
17 | difss 4095 | . . . . . . . 8 ⊢ (1o ∖ 𝐵) ⊆ 1o | |
18 | 16, 17 | eqsstrdi 4002 | . . . . . . 7 ⊢ (𝜑 → (∅ ↑o 𝐵) ⊆ 1o) |
19 | oveq1 7368 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (𝐴 ↑o 𝐵) = (∅ ↑o 𝐵)) | |
20 | 19 | sseq1d 3979 | . . . . . . 7 ⊢ (𝐴 = ∅ → ((𝐴 ↑o 𝐵) ⊆ 1o ↔ (∅ ↑o 𝐵) ⊆ 1o)) |
21 | 18, 20 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝜑 → (𝐴 = ∅ → (𝐴 ↑o 𝐵) ⊆ 1o)) |
22 | oe1m 8496 | . . . . . . . 8 ⊢ (𝐵 ∈ On → (1o ↑o 𝐵) = 1o) | |
23 | eqimss 4004 | . . . . . . . 8 ⊢ ((1o ↑o 𝐵) = 1o → (1o ↑o 𝐵) ⊆ 1o) | |
24 | 2, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (1o ↑o 𝐵) ⊆ 1o) |
25 | oveq1 7368 | . . . . . . . 8 ⊢ (𝐴 = 1o → (𝐴 ↑o 𝐵) = (1o ↑o 𝐵)) | |
26 | 25 | sseq1d 3979 | . . . . . . 7 ⊢ (𝐴 = 1o → ((𝐴 ↑o 𝐵) ⊆ 1o ↔ (1o ↑o 𝐵) ⊆ 1o)) |
27 | 24, 26 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝜑 → (𝐴 = 1o → (𝐴 ↑o 𝐵) ⊆ 1o)) |
28 | 21, 27 | jaod 858 | . . . . 5 ⊢ (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1o) → (𝐴 ↑o 𝐵) ⊆ 1o)) |
29 | 14, 28 | mtod 197 | . . . 4 ⊢ (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1o)) |
30 | elpri 4612 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
31 | df2o3 8424 | . . . . 5 ⊢ 2o = {∅, 1o} | |
32 | 30, 31 | eleq2s 2852 | . . . 4 ⊢ (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o)) |
33 | 29, 32 | nsyl 140 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 2o) |
34 | 1, 33 | eldifd 3925 | . 2 ⊢ (𝜑 → 𝐴 ∈ (On ∖ 2o)) |
35 | 34, 10 | jca 513 | 1 ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4286 {cpr 4592 {copab 5171 dom cdm 5637 ran crn 5638 Oncon0 6321 ‘cfv 6500 (class class class)co 7361 1oc1o 8409 2oc2o 8410 ↑o coe 8415 CNF ccnf 9605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-2o 8417 df-oadd 8420 df-omul 8421 df-oexp 8422 |
This theorem is referenced by: cantnflem3 9635 cantnflem4 9636 |
Copyright terms: Public domain | W3C validator |