MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem2 Structured version   Visualization version   GIF version

Theorem cantnflem2 9137
Description: Lemma for cantnf 9140. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
Assertion
Ref Expression
cantnflem2 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnflem2
StepHypRef Expression
1 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . . . . . . 10 (𝜑𝐵 ∈ On)
3 oecl 8145 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐴o 𝐵) ∈ On)
5 cantnf.c . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴o 𝐵))
6 onelon 6184 . . . . . . . . 9 (((𝐴o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴o 𝐵)) → 𝐶 ∈ On)
74, 5, 6syl2anc 587 . . . . . . . 8 (𝜑𝐶 ∈ On)
8 cantnf.e . . . . . . . 8 (𝜑 → ∅ ∈ 𝐶)
9 ondif1 8109 . . . . . . . 8 (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
107, 8, 9sylanbrc 586 . . . . . . 7 (𝜑𝐶 ∈ (On ∖ 1o))
1110eldifbd 3894 . . . . . 6 (𝜑 → ¬ 𝐶 ∈ 1o)
12 ssel 3908 . . . . . . 7 ((𝐴o 𝐵) ⊆ 1o → (𝐶 ∈ (𝐴o 𝐵) → 𝐶 ∈ 1o))
135, 12syl5com 31 . . . . . 6 (𝜑 → ((𝐴o 𝐵) ⊆ 1o𝐶 ∈ 1o))
1411, 13mtod 201 . . . . 5 (𝜑 → ¬ (𝐴o 𝐵) ⊆ 1o)
15 oe0m 8126 . . . . . . . . 9 (𝐵 ∈ On → (∅ ↑o 𝐵) = (1o𝐵))
162, 15syl 17 . . . . . . . 8 (𝜑 → (∅ ↑o 𝐵) = (1o𝐵))
17 difss 4059 . . . . . . . 8 (1o𝐵) ⊆ 1o
1816, 17eqsstrdi 3969 . . . . . . 7 (𝜑 → (∅ ↑o 𝐵) ⊆ 1o)
19 oveq1 7142 . . . . . . . 8 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
2019sseq1d 3946 . . . . . . 7 (𝐴 = ∅ → ((𝐴o 𝐵) ⊆ 1o ↔ (∅ ↑o 𝐵) ⊆ 1o))
2118, 20syl5ibrcom 250 . . . . . 6 (𝜑 → (𝐴 = ∅ → (𝐴o 𝐵) ⊆ 1o))
22 oe1m 8154 . . . . . . . 8 (𝐵 ∈ On → (1oo 𝐵) = 1o)
23 eqimss 3971 . . . . . . . 8 ((1oo 𝐵) = 1o → (1oo 𝐵) ⊆ 1o)
242, 22, 233syl 18 . . . . . . 7 (𝜑 → (1oo 𝐵) ⊆ 1o)
25 oveq1 7142 . . . . . . . 8 (𝐴 = 1o → (𝐴o 𝐵) = (1oo 𝐵))
2625sseq1d 3946 . . . . . . 7 (𝐴 = 1o → ((𝐴o 𝐵) ⊆ 1o ↔ (1oo 𝐵) ⊆ 1o))
2724, 26syl5ibrcom 250 . . . . . 6 (𝜑 → (𝐴 = 1o → (𝐴o 𝐵) ⊆ 1o))
2821, 27jaod 856 . . . . 5 (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1o) → (𝐴o 𝐵) ⊆ 1o))
2914, 28mtod 201 . . . 4 (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1o))
30 elpri 4547 . . . . 5 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
31 df2o3 8100 . . . . 5 2o = {∅, 1o}
3230, 31eleq2s 2908 . . . 4 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
3329, 32nsyl 142 . . 3 (𝜑 → ¬ 𝐴 ∈ 2o)
341, 33eldifd 3892 . 2 (𝜑𝐴 ∈ (On ∖ 2o))
3534, 10jca 515 1 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cdif 3878  wss 3881  c0 4243  {cpr 4527  {copab 5092  dom cdm 5519  ran crn 5520  Oncon0 6159  cfv 6324  (class class class)co 7135  1oc1o 8078  2oc2o 8079  o coe 8084   CNF ccnf 9108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-oexp 8091
This theorem is referenced by:  cantnflem3  9138  cantnflem4  9139
  Copyright terms: Public domain W3C validator