MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem2 Structured version   Visualization version   GIF version

Theorem cantnflem2 9378
Description: Lemma for cantnf 9381. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
Assertion
Ref Expression
cantnflem2 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnflem2
StepHypRef Expression
1 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . . . . . . 10 (𝜑𝐵 ∈ On)
3 oecl 8329 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐴o 𝐵) ∈ On)
5 cantnf.c . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴o 𝐵))
6 onelon 6276 . . . . . . . . 9 (((𝐴o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴o 𝐵)) → 𝐶 ∈ On)
74, 5, 6syl2anc 583 . . . . . . . 8 (𝜑𝐶 ∈ On)
8 cantnf.e . . . . . . . 8 (𝜑 → ∅ ∈ 𝐶)
9 ondif1 8293 . . . . . . . 8 (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
107, 8, 9sylanbrc 582 . . . . . . 7 (𝜑𝐶 ∈ (On ∖ 1o))
1110eldifbd 3896 . . . . . 6 (𝜑 → ¬ 𝐶 ∈ 1o)
12 ssel 3910 . . . . . . 7 ((𝐴o 𝐵) ⊆ 1o → (𝐶 ∈ (𝐴o 𝐵) → 𝐶 ∈ 1o))
135, 12syl5com 31 . . . . . 6 (𝜑 → ((𝐴o 𝐵) ⊆ 1o𝐶 ∈ 1o))
1411, 13mtod 197 . . . . 5 (𝜑 → ¬ (𝐴o 𝐵) ⊆ 1o)
15 oe0m 8310 . . . . . . . . 9 (𝐵 ∈ On → (∅ ↑o 𝐵) = (1o𝐵))
162, 15syl 17 . . . . . . . 8 (𝜑 → (∅ ↑o 𝐵) = (1o𝐵))
17 difss 4062 . . . . . . . 8 (1o𝐵) ⊆ 1o
1816, 17eqsstrdi 3971 . . . . . . 7 (𝜑 → (∅ ↑o 𝐵) ⊆ 1o)
19 oveq1 7262 . . . . . . . 8 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
2019sseq1d 3948 . . . . . . 7 (𝐴 = ∅ → ((𝐴o 𝐵) ⊆ 1o ↔ (∅ ↑o 𝐵) ⊆ 1o))
2118, 20syl5ibrcom 246 . . . . . 6 (𝜑 → (𝐴 = ∅ → (𝐴o 𝐵) ⊆ 1o))
22 oe1m 8338 . . . . . . . 8 (𝐵 ∈ On → (1oo 𝐵) = 1o)
23 eqimss 3973 . . . . . . . 8 ((1oo 𝐵) = 1o → (1oo 𝐵) ⊆ 1o)
242, 22, 233syl 18 . . . . . . 7 (𝜑 → (1oo 𝐵) ⊆ 1o)
25 oveq1 7262 . . . . . . . 8 (𝐴 = 1o → (𝐴o 𝐵) = (1oo 𝐵))
2625sseq1d 3948 . . . . . . 7 (𝐴 = 1o → ((𝐴o 𝐵) ⊆ 1o ↔ (1oo 𝐵) ⊆ 1o))
2724, 26syl5ibrcom 246 . . . . . 6 (𝜑 → (𝐴 = 1o → (𝐴o 𝐵) ⊆ 1o))
2821, 27jaod 855 . . . . 5 (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1o) → (𝐴o 𝐵) ⊆ 1o))
2914, 28mtod 197 . . . 4 (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1o))
30 elpri 4580 . . . . 5 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
31 df2o3 8282 . . . . 5 2o = {∅, 1o}
3230, 31eleq2s 2857 . . . 4 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
3329, 32nsyl 140 . . 3 (𝜑 → ¬ 𝐴 ∈ 2o)
341, 33eldifd 3894 . 2 (𝜑𝐴 ∈ (On ∖ 2o))
3534, 10jca 511 1 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cdif 3880  wss 3883  c0 4253  {cpr 4560  {copab 5132  dom cdm 5580  ran crn 5581  Oncon0 6251  cfv 6418  (class class class)co 7255  1oc1o 8260  2oc2o 8261  o coe 8266   CNF ccnf 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by:  cantnflem3  9379  cantnflem4  9380
  Copyright terms: Public domain W3C validator