MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem2 Structured version   Visualization version   GIF version

Theorem cantnflem2 9728
Description: Lemma for cantnf 9731. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
Assertion
Ref Expression
cantnflem2 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnflem2
StepHypRef Expression
1 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . . . . . . 10 (𝜑𝐵 ∈ On)
3 oecl 8574 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴o 𝐵) ∈ On)
5 cantnf.c . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴o 𝐵))
6 onelon 6411 . . . . . . . . 9 (((𝐴o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴o 𝐵)) → 𝐶 ∈ On)
74, 5, 6syl2anc 584 . . . . . . . 8 (𝜑𝐶 ∈ On)
8 cantnf.e . . . . . . . 8 (𝜑 → ∅ ∈ 𝐶)
9 ondif1 8538 . . . . . . . 8 (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
107, 8, 9sylanbrc 583 . . . . . . 7 (𝜑𝐶 ∈ (On ∖ 1o))
1110eldifbd 3976 . . . . . 6 (𝜑 → ¬ 𝐶 ∈ 1o)
12 ssel 3989 . . . . . . 7 ((𝐴o 𝐵) ⊆ 1o → (𝐶 ∈ (𝐴o 𝐵) → 𝐶 ∈ 1o))
135, 12syl5com 31 . . . . . 6 (𝜑 → ((𝐴o 𝐵) ⊆ 1o𝐶 ∈ 1o))
1411, 13mtod 198 . . . . 5 (𝜑 → ¬ (𝐴o 𝐵) ⊆ 1o)
15 oe0m 8555 . . . . . . . . 9 (𝐵 ∈ On → (∅ ↑o 𝐵) = (1o𝐵))
162, 15syl 17 . . . . . . . 8 (𝜑 → (∅ ↑o 𝐵) = (1o𝐵))
17 difss 4146 . . . . . . . 8 (1o𝐵) ⊆ 1o
1816, 17eqsstrdi 4050 . . . . . . 7 (𝜑 → (∅ ↑o 𝐵) ⊆ 1o)
19 oveq1 7438 . . . . . . . 8 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
2019sseq1d 4027 . . . . . . 7 (𝐴 = ∅ → ((𝐴o 𝐵) ⊆ 1o ↔ (∅ ↑o 𝐵) ⊆ 1o))
2118, 20syl5ibrcom 247 . . . . . 6 (𝜑 → (𝐴 = ∅ → (𝐴o 𝐵) ⊆ 1o))
22 oe1m 8582 . . . . . . . 8 (𝐵 ∈ On → (1oo 𝐵) = 1o)
23 eqimss 4054 . . . . . . . 8 ((1oo 𝐵) = 1o → (1oo 𝐵) ⊆ 1o)
242, 22, 233syl 18 . . . . . . 7 (𝜑 → (1oo 𝐵) ⊆ 1o)
25 oveq1 7438 . . . . . . . 8 (𝐴 = 1o → (𝐴o 𝐵) = (1oo 𝐵))
2625sseq1d 4027 . . . . . . 7 (𝐴 = 1o → ((𝐴o 𝐵) ⊆ 1o ↔ (1oo 𝐵) ⊆ 1o))
2724, 26syl5ibrcom 247 . . . . . 6 (𝜑 → (𝐴 = 1o → (𝐴o 𝐵) ⊆ 1o))
2821, 27jaod 859 . . . . 5 (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1o) → (𝐴o 𝐵) ⊆ 1o))
2914, 28mtod 198 . . . 4 (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1o))
30 elpri 4654 . . . . 5 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
31 df2o3 8513 . . . . 5 2o = {∅, 1o}
3230, 31eleq2s 2857 . . . 4 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
3329, 32nsyl 140 . . 3 (𝜑 → ¬ 𝐴 ∈ 2o)
341, 33eldifd 3974 . 2 (𝜑𝐴 ∈ (On ∖ 2o))
3534, 10jca 511 1 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cdif 3960  wss 3963  c0 4339  {cpr 4633  {copab 5210  dom cdm 5689  ran crn 5690  Oncon0 6386  cfv 6563  (class class class)co 7431  1oc1o 8498  2oc2o 8499  o coe 8504   CNF ccnf 9699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-oexp 8511
This theorem is referenced by:  cantnflem3  9729  cantnflem4  9730
  Copyright terms: Public domain W3C validator