MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem2 Structured version   Visualization version   GIF version

Theorem cantnflem2 9704
Description: Lemma for cantnf 9707. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
Assertion
Ref Expression
cantnflem2 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnflem2
StepHypRef Expression
1 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . . . . . . 10 (𝜑𝐵 ∈ On)
3 oecl 8549 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
41, 2, 3syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴o 𝐵) ∈ On)
5 cantnf.c . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴o 𝐵))
6 onelon 6377 . . . . . . . . 9 (((𝐴o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴o 𝐵)) → 𝐶 ∈ On)
74, 5, 6syl2anc 584 . . . . . . . 8 (𝜑𝐶 ∈ On)
8 cantnf.e . . . . . . . 8 (𝜑 → ∅ ∈ 𝐶)
9 ondif1 8513 . . . . . . . 8 (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
107, 8, 9sylanbrc 583 . . . . . . 7 (𝜑𝐶 ∈ (On ∖ 1o))
1110eldifbd 3939 . . . . . 6 (𝜑 → ¬ 𝐶 ∈ 1o)
12 ssel 3952 . . . . . . 7 ((𝐴o 𝐵) ⊆ 1o → (𝐶 ∈ (𝐴o 𝐵) → 𝐶 ∈ 1o))
135, 12syl5com 31 . . . . . 6 (𝜑 → ((𝐴o 𝐵) ⊆ 1o𝐶 ∈ 1o))
1411, 13mtod 198 . . . . 5 (𝜑 → ¬ (𝐴o 𝐵) ⊆ 1o)
15 oe0m 8530 . . . . . . . . 9 (𝐵 ∈ On → (∅ ↑o 𝐵) = (1o𝐵))
162, 15syl 17 . . . . . . . 8 (𝜑 → (∅ ↑o 𝐵) = (1o𝐵))
17 difss 4111 . . . . . . . 8 (1o𝐵) ⊆ 1o
1816, 17eqsstrdi 4003 . . . . . . 7 (𝜑 → (∅ ↑o 𝐵) ⊆ 1o)
19 oveq1 7412 . . . . . . . 8 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
2019sseq1d 3990 . . . . . . 7 (𝐴 = ∅ → ((𝐴o 𝐵) ⊆ 1o ↔ (∅ ↑o 𝐵) ⊆ 1o))
2118, 20syl5ibrcom 247 . . . . . 6 (𝜑 → (𝐴 = ∅ → (𝐴o 𝐵) ⊆ 1o))
22 oe1m 8557 . . . . . . . 8 (𝐵 ∈ On → (1oo 𝐵) = 1o)
23 eqimss 4017 . . . . . . . 8 ((1oo 𝐵) = 1o → (1oo 𝐵) ⊆ 1o)
242, 22, 233syl 18 . . . . . . 7 (𝜑 → (1oo 𝐵) ⊆ 1o)
25 oveq1 7412 . . . . . . . 8 (𝐴 = 1o → (𝐴o 𝐵) = (1oo 𝐵))
2625sseq1d 3990 . . . . . . 7 (𝐴 = 1o → ((𝐴o 𝐵) ⊆ 1o ↔ (1oo 𝐵) ⊆ 1o))
2724, 26syl5ibrcom 247 . . . . . 6 (𝜑 → (𝐴 = 1o → (𝐴o 𝐵) ⊆ 1o))
2821, 27jaod 859 . . . . 5 (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1o) → (𝐴o 𝐵) ⊆ 1o))
2914, 28mtod 198 . . . 4 (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1o))
30 elpri 4625 . . . . 5 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
31 df2o3 8488 . . . . 5 2o = {∅, 1o}
3230, 31eleq2s 2852 . . . 4 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
3329, 32nsyl 140 . . 3 (𝜑 → ¬ 𝐴 ∈ 2o)
341, 33eldifd 3937 . 2 (𝜑𝐴 ∈ (On ∖ 2o))
3534, 10jca 511 1 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cdif 3923  wss 3926  c0 4308  {cpr 4603  {copab 5181  dom cdm 5654  ran crn 5655  Oncon0 6352  cfv 6531  (class class class)co 7405  1oc1o 8473  2oc2o 8474  o coe 8479   CNF ccnf 9675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486
This theorem is referenced by:  cantnflem3  9705  cantnflem4  9706
  Copyright terms: Public domain W3C validator