| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnflem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cantnf 9589. (Contributed by Mario Carneiro, 28-May-2015.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| cantnf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) |
| cantnf.s | ⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) |
| cantnf.e | ⊢ (𝜑 → ∅ ∈ 𝐶) |
| Ref | Expression |
|---|---|
| cantnflem2 | ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 2 | cantnfs.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 3 | oecl 8455 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
| 5 | cantnf.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) | |
| 6 | onelon 6332 | . . . . . . . . 9 ⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴 ↑o 𝐵)) → 𝐶 ∈ On) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ On) |
| 8 | cantnf.e | . . . . . . . 8 ⊢ (𝜑 → ∅ ∈ 𝐶) | |
| 9 | ondif1 8419 | . . . . . . . 8 ⊢ (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) | |
| 10 | 7, 8, 9 | sylanbrc 583 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (On ∖ 1o)) |
| 11 | 10 | eldifbd 3916 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐶 ∈ 1o) |
| 12 | ssel 3929 | . . . . . . 7 ⊢ ((𝐴 ↑o 𝐵) ⊆ 1o → (𝐶 ∈ (𝐴 ↑o 𝐵) → 𝐶 ∈ 1o)) | |
| 13 | 5, 12 | syl5com 31 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ↑o 𝐵) ⊆ 1o → 𝐶 ∈ 1o)) |
| 14 | 11, 13 | mtod 198 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 ↑o 𝐵) ⊆ 1o) |
| 15 | oe0m 8436 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (∅ ↑o 𝐵) = (1o ∖ 𝐵)) | |
| 16 | 2, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (∅ ↑o 𝐵) = (1o ∖ 𝐵)) |
| 17 | difss 4087 | . . . . . . . 8 ⊢ (1o ∖ 𝐵) ⊆ 1o | |
| 18 | 16, 17 | eqsstrdi 3980 | . . . . . . 7 ⊢ (𝜑 → (∅ ↑o 𝐵) ⊆ 1o) |
| 19 | oveq1 7356 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (𝐴 ↑o 𝐵) = (∅ ↑o 𝐵)) | |
| 20 | 19 | sseq1d 3967 | . . . . . . 7 ⊢ (𝐴 = ∅ → ((𝐴 ↑o 𝐵) ⊆ 1o ↔ (∅ ↑o 𝐵) ⊆ 1o)) |
| 21 | 18, 20 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝜑 → (𝐴 = ∅ → (𝐴 ↑o 𝐵) ⊆ 1o)) |
| 22 | oe1m 8463 | . . . . . . . 8 ⊢ (𝐵 ∈ On → (1o ↑o 𝐵) = 1o) | |
| 23 | eqimss 3994 | . . . . . . . 8 ⊢ ((1o ↑o 𝐵) = 1o → (1o ↑o 𝐵) ⊆ 1o) | |
| 24 | 2, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (1o ↑o 𝐵) ⊆ 1o) |
| 25 | oveq1 7356 | . . . . . . . 8 ⊢ (𝐴 = 1o → (𝐴 ↑o 𝐵) = (1o ↑o 𝐵)) | |
| 26 | 25 | sseq1d 3967 | . . . . . . 7 ⊢ (𝐴 = 1o → ((𝐴 ↑o 𝐵) ⊆ 1o ↔ (1o ↑o 𝐵) ⊆ 1o)) |
| 27 | 24, 26 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝜑 → (𝐴 = 1o → (𝐴 ↑o 𝐵) ⊆ 1o)) |
| 28 | 21, 27 | jaod 859 | . . . . 5 ⊢ (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1o) → (𝐴 ↑o 𝐵) ⊆ 1o)) |
| 29 | 14, 28 | mtod 198 | . . . 4 ⊢ (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1o)) |
| 30 | elpri 4601 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
| 31 | df2o3 8396 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 32 | 30, 31 | eleq2s 2846 | . . . 4 ⊢ (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o)) |
| 33 | 29, 32 | nsyl 140 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 2o) |
| 34 | 1, 33 | eldifd 3914 | . 2 ⊢ (𝜑 → 𝐴 ∈ (On ∖ 2o)) |
| 35 | 34, 10 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 {cpr 4579 {copab 5154 dom cdm 5619 ran crn 5620 Oncon0 6307 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 2oc2o 8382 ↑o coe 8387 CNF ccnf 9557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-oexp 8394 |
| This theorem is referenced by: cantnflem3 9587 cantnflem4 9588 |
| Copyright terms: Public domain | W3C validator |