![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnflem2 | Structured version Visualization version GIF version |
Description: Lemma for cantnf 9731. (Contributed by Mario Carneiro, 28-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
cantnf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) |
cantnf.s | ⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) |
cantnf.e | ⊢ (𝜑 → ∅ ∈ 𝐶) |
Ref | Expression |
---|---|
cantnflem2 | ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
2 | cantnfs.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ On) | |
3 | oecl 8574 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | |
4 | 1, 2, 3 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
5 | cantnf.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) | |
6 | onelon 6411 | . . . . . . . . 9 ⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴 ↑o 𝐵)) → 𝐶 ∈ On) | |
7 | 4, 5, 6 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ On) |
8 | cantnf.e | . . . . . . . 8 ⊢ (𝜑 → ∅ ∈ 𝐶) | |
9 | ondif1 8538 | . . . . . . . 8 ⊢ (𝐶 ∈ (On ∖ 1o) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) | |
10 | 7, 8, 9 | sylanbrc 583 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (On ∖ 1o)) |
11 | 10 | eldifbd 3976 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐶 ∈ 1o) |
12 | ssel 3989 | . . . . . . 7 ⊢ ((𝐴 ↑o 𝐵) ⊆ 1o → (𝐶 ∈ (𝐴 ↑o 𝐵) → 𝐶 ∈ 1o)) | |
13 | 5, 12 | syl5com 31 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ↑o 𝐵) ⊆ 1o → 𝐶 ∈ 1o)) |
14 | 11, 13 | mtod 198 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 ↑o 𝐵) ⊆ 1o) |
15 | oe0m 8555 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (∅ ↑o 𝐵) = (1o ∖ 𝐵)) | |
16 | 2, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (∅ ↑o 𝐵) = (1o ∖ 𝐵)) |
17 | difss 4146 | . . . . . . . 8 ⊢ (1o ∖ 𝐵) ⊆ 1o | |
18 | 16, 17 | eqsstrdi 4050 | . . . . . . 7 ⊢ (𝜑 → (∅ ↑o 𝐵) ⊆ 1o) |
19 | oveq1 7438 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (𝐴 ↑o 𝐵) = (∅ ↑o 𝐵)) | |
20 | 19 | sseq1d 4027 | . . . . . . 7 ⊢ (𝐴 = ∅ → ((𝐴 ↑o 𝐵) ⊆ 1o ↔ (∅ ↑o 𝐵) ⊆ 1o)) |
21 | 18, 20 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝜑 → (𝐴 = ∅ → (𝐴 ↑o 𝐵) ⊆ 1o)) |
22 | oe1m 8582 | . . . . . . . 8 ⊢ (𝐵 ∈ On → (1o ↑o 𝐵) = 1o) | |
23 | eqimss 4054 | . . . . . . . 8 ⊢ ((1o ↑o 𝐵) = 1o → (1o ↑o 𝐵) ⊆ 1o) | |
24 | 2, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (1o ↑o 𝐵) ⊆ 1o) |
25 | oveq1 7438 | . . . . . . . 8 ⊢ (𝐴 = 1o → (𝐴 ↑o 𝐵) = (1o ↑o 𝐵)) | |
26 | 25 | sseq1d 4027 | . . . . . . 7 ⊢ (𝐴 = 1o → ((𝐴 ↑o 𝐵) ⊆ 1o ↔ (1o ↑o 𝐵) ⊆ 1o)) |
27 | 24, 26 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝜑 → (𝐴 = 1o → (𝐴 ↑o 𝐵) ⊆ 1o)) |
28 | 21, 27 | jaod 859 | . . . . 5 ⊢ (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1o) → (𝐴 ↑o 𝐵) ⊆ 1o)) |
29 | 14, 28 | mtod 198 | . . . 4 ⊢ (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1o)) |
30 | elpri 4654 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o)) | |
31 | df2o3 8513 | . . . . 5 ⊢ 2o = {∅, 1o} | |
32 | 30, 31 | eleq2s 2857 | . . . 4 ⊢ (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o)) |
33 | 29, 32 | nsyl 140 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 2o) |
34 | 1, 33 | eldifd 3974 | . 2 ⊢ (𝜑 → 𝐴 ∈ (On ∖ 2o)) |
35 | 34, 10 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 {cpr 4633 {copab 5210 dom cdm 5689 ran crn 5690 Oncon0 6386 ‘cfv 6563 (class class class)co 7431 1oc1o 8498 2oc2o 8499 ↑o coe 8504 CNF ccnf 9699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-oexp 8511 |
This theorem is referenced by: cantnflem3 9729 cantnflem4 9730 |
Copyright terms: Public domain | W3C validator |