Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omnord1 Structured version   Visualization version   GIF version

Theorem omnord1 43269
Description: When the same non-zero ordinal is multiplied on the right, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 4-Feb-2025.)
Assertion
Ref Expression
omnord1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem omnord1
StepHypRef Expression
1 omnord1ex 43268 . 2 ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))
2 1on 8536 . . 3 1o ∈ On
3 2on 8538 . . . 4 2o ∈ On
4 omelon 9717 . . . . . 6 ω ∈ On
5 peano1 7929 . . . . . 6 ∅ ∈ ω
6 ondif1 8559 . . . . . 6 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
74, 5, 6mpbir2an 710 . . . . 5 ω ∈ (On ∖ 1o)
8 oveq2 7458 . . . . . . . . 9 (𝑐 = ω → (1o ·o 𝑐) = (1o ·o ω))
9 oveq2 7458 . . . . . . . . 9 (𝑐 = ω → (2o ·o 𝑐) = (2o ·o ω))
108, 9eleq12d 2838 . . . . . . . 8 (𝑐 = ω → ((1o ·o 𝑐) ∈ (2o ·o 𝑐) ↔ (1o ·o ω) ∈ (2o ·o ω)))
1110bibi2d 342 . . . . . . 7 (𝑐 = ω → ((1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)) ↔ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))))
1211notbid 318 . . . . . 6 (𝑐 = ω → (¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)) ↔ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))))
1312rspcev 3635 . . . . 5 ((ω ∈ (On ∖ 1o) ∧ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))) → ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
147, 13mpan 689 . . . 4 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
15 eleq2 2833 . . . . . . . 8 (𝑏 = 2o → (1o𝑏 ↔ 1o ∈ 2o))
16 oveq1 7457 . . . . . . . . 9 (𝑏 = 2o → (𝑏 ·o 𝑐) = (2o ·o 𝑐))
1716eleq2d 2830 . . . . . . . 8 (𝑏 = 2o → ((1o ·o 𝑐) ∈ (𝑏 ·o 𝑐) ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
1815, 17bibi12d 345 . . . . . . 7 (𝑏 = 2o → ((1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
1918notbid 318 . . . . . 6 (𝑏 = 2o → (¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
2019rexbidv 3185 . . . . 5 (𝑏 = 2o → (∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
2120rspcev 3635 . . . 4 ((2o ∈ On ∧ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))) → ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
223, 14, 21sylancr 586 . . 3 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
23 eleq1 2832 . . . . . . . 8 (𝑎 = 1o → (𝑎𝑏 ↔ 1o𝑏))
24 oveq1 7457 . . . . . . . . 9 (𝑎 = 1o → (𝑎 ·o 𝑐) = (1o ·o 𝑐))
2524eleq1d 2829 . . . . . . . 8 (𝑎 = 1o → ((𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐) ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
2623, 25bibi12d 345 . . . . . . 7 (𝑎 = 1o → ((𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2726notbid 318 . . . . . 6 (𝑎 = 1o → (¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2827rexbidv 3185 . . . . 5 (𝑎 = 1o → (∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2928rexbidv 3185 . . . 4 (𝑎 = 1o → (∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
3029rspcev 3635 . . 3 ((1o ∈ On ∧ ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
312, 22, 30sylancr 586 . 2 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
321, 31ax-mp 5 1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2108  wrex 3076  cdif 3973  c0 4352  Oncon0 6397  (class class class)co 7450  ωcom 7905  1oc1o 8517  2oc2o 8518   ·o comu 8522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772  ax-inf2 9712
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-oadd 8528  df-omul 8529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator