Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omnord1 Structured version   Visualization version   GIF version

Theorem omnord1 43337
Description: When the same non-zero ordinal is multiplied on the right, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 4-Feb-2025.)
Assertion
Ref Expression
omnord1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem omnord1
StepHypRef Expression
1 omnord1ex 43336 . 2 ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))
2 1on 8397 . . 3 1o ∈ On
3 2on 8398 . . . 4 2o ∈ On
4 omelon 9536 . . . . . 6 ω ∈ On
5 peano1 7819 . . . . . 6 ∅ ∈ ω
6 ondif1 8416 . . . . . 6 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
74, 5, 6mpbir2an 711 . . . . 5 ω ∈ (On ∖ 1o)
8 oveq2 7354 . . . . . . . . 9 (𝑐 = ω → (1o ·o 𝑐) = (1o ·o ω))
9 oveq2 7354 . . . . . . . . 9 (𝑐 = ω → (2o ·o 𝑐) = (2o ·o ω))
108, 9eleq12d 2825 . . . . . . . 8 (𝑐 = ω → ((1o ·o 𝑐) ∈ (2o ·o 𝑐) ↔ (1o ·o ω) ∈ (2o ·o ω)))
1110bibi2d 342 . . . . . . 7 (𝑐 = ω → ((1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)) ↔ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))))
1211notbid 318 . . . . . 6 (𝑐 = ω → (¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)) ↔ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))))
1312rspcev 3577 . . . . 5 ((ω ∈ (On ∖ 1o) ∧ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))) → ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
147, 13mpan 690 . . . 4 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
15 eleq2 2820 . . . . . . . 8 (𝑏 = 2o → (1o𝑏 ↔ 1o ∈ 2o))
16 oveq1 7353 . . . . . . . . 9 (𝑏 = 2o → (𝑏 ·o 𝑐) = (2o ·o 𝑐))
1716eleq2d 2817 . . . . . . . 8 (𝑏 = 2o → ((1o ·o 𝑐) ∈ (𝑏 ·o 𝑐) ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
1815, 17bibi12d 345 . . . . . . 7 (𝑏 = 2o → ((1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
1918notbid 318 . . . . . 6 (𝑏 = 2o → (¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
2019rexbidv 3156 . . . . 5 (𝑏 = 2o → (∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
2120rspcev 3577 . . . 4 ((2o ∈ On ∧ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))) → ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
223, 14, 21sylancr 587 . . 3 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
23 eleq1 2819 . . . . . . . 8 (𝑎 = 1o → (𝑎𝑏 ↔ 1o𝑏))
24 oveq1 7353 . . . . . . . . 9 (𝑎 = 1o → (𝑎 ·o 𝑐) = (1o ·o 𝑐))
2524eleq1d 2816 . . . . . . . 8 (𝑎 = 1o → ((𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐) ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
2623, 25bibi12d 345 . . . . . . 7 (𝑎 = 1o → ((𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2726notbid 318 . . . . . 6 (𝑎 = 1o → (¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2827rexbidv 3156 . . . . 5 (𝑎 = 1o → (∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2928rexbidv 3156 . . . 4 (𝑎 = 1o → (∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
3029rspcev 3577 . . 3 ((1o ∈ On ∧ ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
312, 22, 30sylancr 587 . 2 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
321, 31ax-mp 5 1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  wrex 3056  cdif 3899  c0 4283  Oncon0 6306  (class class class)co 7346  ωcom 7796  1oc1o 8378  2oc2o 8379   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator