Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omnord1 Structured version   Visualization version   GIF version

Theorem omnord1 43266
Description: When the same non-zero ordinal is multiplied on the right, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 4-Feb-2025.)
Assertion
Ref Expression
omnord1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem omnord1
StepHypRef Expression
1 omnord1ex 43265 . 2 ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))
2 1on 8455 . . 3 1o ∈ On
3 2on 8457 . . . 4 2o ∈ On
4 omelon 9617 . . . . . 6 ω ∈ On
5 peano1 7873 . . . . . 6 ∅ ∈ ω
6 ondif1 8476 . . . . . 6 (ω ∈ (On ∖ 1o) ↔ (ω ∈ On ∧ ∅ ∈ ω))
74, 5, 6mpbir2an 711 . . . . 5 ω ∈ (On ∖ 1o)
8 oveq2 7402 . . . . . . . . 9 (𝑐 = ω → (1o ·o 𝑐) = (1o ·o ω))
9 oveq2 7402 . . . . . . . . 9 (𝑐 = ω → (2o ·o 𝑐) = (2o ·o ω))
108, 9eleq12d 2823 . . . . . . . 8 (𝑐 = ω → ((1o ·o 𝑐) ∈ (2o ·o 𝑐) ↔ (1o ·o ω) ∈ (2o ·o ω)))
1110bibi2d 342 . . . . . . 7 (𝑐 = ω → ((1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)) ↔ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))))
1211notbid 318 . . . . . 6 (𝑐 = ω → (¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)) ↔ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))))
1312rspcev 3597 . . . . 5 ((ω ∈ (On ∖ 1o) ∧ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))) → ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
147, 13mpan 690 . . . 4 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
15 eleq2 2818 . . . . . . . 8 (𝑏 = 2o → (1o𝑏 ↔ 1o ∈ 2o))
16 oveq1 7401 . . . . . . . . 9 (𝑏 = 2o → (𝑏 ·o 𝑐) = (2o ·o 𝑐))
1716eleq2d 2815 . . . . . . . 8 (𝑏 = 2o → ((1o ·o 𝑐) ∈ (𝑏 ·o 𝑐) ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐)))
1815, 17bibi12d 345 . . . . . . 7 (𝑏 = 2o → ((1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
1918notbid 318 . . . . . 6 (𝑏 = 2o → (¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
2019rexbidv 3159 . . . . 5 (𝑏 = 2o → (∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))))
2120rspcev 3597 . . . 4 ((2o ∈ On ∧ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o ∈ 2o ↔ (1o ·o 𝑐) ∈ (2o ·o 𝑐))) → ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
223, 14, 21sylancr 587 . . 3 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
23 eleq1 2817 . . . . . . . 8 (𝑎 = 1o → (𝑎𝑏 ↔ 1o𝑏))
24 oveq1 7401 . . . . . . . . 9 (𝑎 = 1o → (𝑎 ·o 𝑐) = (1o ·o 𝑐))
2524eleq1d 2814 . . . . . . . 8 (𝑎 = 1o → ((𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐) ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
2623, 25bibi12d 345 . . . . . . 7 (𝑎 = 1o → ((𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2726notbid 318 . . . . . 6 (𝑎 = 1o → (¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2827rexbidv 3159 . . . . 5 (𝑎 = 1o → (∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
2928rexbidv 3159 . . . 4 (𝑎 = 1o → (∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) ↔ ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))))
3029rspcev 3597 . . 3 ((1o ∈ On ∧ ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (1o𝑏 ↔ (1o ·o 𝑐) ∈ (𝑏 ·o 𝑐))) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
312, 22, 30sylancr 587 . 2 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) → ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)))
321, 31ax-mp 5 1 𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wrex 3055  cdif 3919  c0 4304  Oncon0 6340  (class class class)co 7394  ωcom 7850  1oc1o 8436  2oc2o 8437   ·o comu 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718  ax-inf2 9612
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-omul 8448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator