Proof of Theorem cnfcom3
Step | Hyp | Ref
| Expression |
1 | | omelon 9334 |
. . . . . 6
⊢ ω
∈ On |
2 | | cnfcom.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | suppssdm 7964 |
. . . . . . . . 9
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 |
4 | | cnfcom.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) |
5 | | cnfcom.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = dom (ω CNF 𝐴) |
6 | 1 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ω ∈
On) |
7 | 5, 6, 2 | cantnff1o 9384 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴)) |
8 | | f1ocnv 6712 |
. . . . . . . . . . . . . 14
⊢ ((ω
CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) → ◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆) |
9 | | f1of 6700 |
. . . . . . . . . . . . . 14
⊢ (◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) |
11 | | cnfcom.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) |
12 | 10, 11 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡(ω CNF 𝐴)‘𝐵) ∈ 𝑆) |
13 | 4, 12 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
14 | 5, 6, 2 | cantnfs 9354 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))) |
15 | 13, 14 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)) |
16 | 15 | simpld 494 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶ω) |
17 | 3, 16 | fssdm 6604 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐴) |
18 | | cnfcom.w |
. . . . . . . . 9
⊢ 𝑊 = (𝐺‘∪ dom
𝐺) |
19 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 supp ∅) ∈
V |
20 | | cnfcom.g |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
21 | 20 | oion 9225 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 supp ∅) ∈ V →
dom 𝐺 ∈
On) |
22 | 19, 21 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ dom 𝐺 ∈ On |
23 | 22 | elexi 3441 |
. . . . . . . . . . . . 13
⊢ dom 𝐺 ∈ V |
24 | 23 | uniex 7572 |
. . . . . . . . . . . 12
⊢ ∪ dom 𝐺 ∈ V |
25 | 24 | sucid 6330 |
. . . . . . . . . . 11
⊢ ∪ dom 𝐺 ∈ suc ∪ dom
𝐺 |
26 | | cnfcom.h |
. . . . . . . . . . . 12
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) |
27 | | cnfcom.t |
. . . . . . . . . . . 12
⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) |
28 | | cnfcom.m |
. . . . . . . . . . . 12
⊢ 𝑀 = ((ω ↑o
(𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) |
29 | | cnfcom.k |
. . . . . . . . . . . 12
⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) |
30 | | cnfcom3.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ω ⊆ 𝐵) |
31 | | peano1 7710 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ ω |
32 | 31 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∅ ∈
ω) |
33 | 30, 32 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∅ ∈ 𝐵) |
34 | 5, 2, 11, 4, 20, 26, 27, 28, 29, 18, 33 | cnfcom2lem 9389 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐺 = suc ∪ dom
𝐺) |
35 | 25, 34 | eleqtrrid 2846 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ dom 𝐺 ∈ dom 𝐺) |
36 | 20 | oif 9219 |
. . . . . . . . . . 11
⊢ 𝐺:dom 𝐺⟶(𝐹 supp ∅) |
37 | 36 | ffvelrni 6942 |
. . . . . . . . . 10
⊢ (∪ dom 𝐺 ∈ dom 𝐺 → (𝐺‘∪ dom
𝐺) ∈ (𝐹 supp ∅)) |
38 | 35, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘∪ dom
𝐺) ∈ (𝐹 supp ∅)) |
39 | 18, 38 | eqeltrid 2843 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ (𝐹 supp ∅)) |
40 | 17, 39 | sseldd 3918 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ 𝐴) |
41 | | onelon 6276 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑊 ∈ 𝐴) → 𝑊 ∈ On) |
42 | 2, 40, 41 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ On) |
43 | | oecl 8329 |
. . . . . 6
⊢ ((ω
∈ On ∧ 𝑊 ∈
On) → (ω ↑o 𝑊) ∈ On) |
44 | 1, 42, 43 | sylancr 586 |
. . . . 5
⊢ (𝜑 → (ω
↑o 𝑊)
∈ On) |
45 | 16, 40 | ffvelrnd 6944 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑊) ∈ ω) |
46 | | nnon 7693 |
. . . . . 6
⊢ ((𝐹‘𝑊) ∈ ω → (𝐹‘𝑊) ∈ On) |
47 | 45, 46 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑊) ∈ On) |
48 | | cnfcom.y |
. . . . . 6
⊢ 𝑌 = (𝑢 ∈ (𝐹‘𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω
↑o 𝑊)
·o 𝑢)
+o 𝑣)) |
49 | | cnfcom.x |
. . . . . 6
⊢ 𝑋 = (𝑢 ∈ (𝐹‘𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹‘𝑊) ·o 𝑣) +o 𝑢)) |
50 | 48, 49 | omf1o 8815 |
. . . . 5
⊢
(((ω ↑o 𝑊) ∈ On ∧ (𝐹‘𝑊) ∈ On) → (𝑋 ∘ ◡𝑌):((ω ↑o 𝑊) ·o (𝐹‘𝑊))–1-1-onto→((𝐹‘𝑊) ·o (ω
↑o 𝑊))) |
51 | 44, 47, 50 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑋 ∘ ◡𝑌):((ω ↑o 𝑊) ·o (𝐹‘𝑊))–1-1-onto→((𝐹‘𝑊) ·o (ω
↑o 𝑊))) |
52 | 16 | ffnd 6585 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn 𝐴) |
53 | | 0ex 5226 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
54 | 53 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∅ ∈
V) |
55 | | elsuppfn 7958 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ On ∧ ∅ ∈ V) →
(𝑊 ∈ (𝐹 supp ∅) ↔ (𝑊 ∈ 𝐴 ∧ (𝐹‘𝑊) ≠ ∅))) |
56 | 52, 2, 54, 55 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∈ (𝐹 supp ∅) ↔ (𝑊 ∈ 𝐴 ∧ (𝐹‘𝑊) ≠ ∅))) |
57 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑊 ∈ 𝐴 ∧ (𝐹‘𝑊) ≠ ∅) → (𝐹‘𝑊) ≠ ∅) |
58 | 56, 57 | syl6bi 252 |
. . . . . . . 8
⊢ (𝜑 → (𝑊 ∈ (𝐹 supp ∅) → (𝐹‘𝑊) ≠ ∅)) |
59 | 39, 58 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑊) ≠ ∅) |
60 | | on0eln0 6306 |
. . . . . . . 8
⊢ ((𝐹‘𝑊) ∈ On → (∅ ∈ (𝐹‘𝑊) ↔ (𝐹‘𝑊) ≠ ∅)) |
61 | 45, 46, 60 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (∅ ∈ (𝐹‘𝑊) ↔ (𝐹‘𝑊) ≠ ∅)) |
62 | 59, 61 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → ∅ ∈ (𝐹‘𝑊)) |
63 | 5, 2, 11, 4, 20, 26, 27, 28, 29, 18, 30 | cnfcom3lem 9391 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ (On ∖
1o)) |
64 | | ondif1 8293 |
. . . . . . . 8
⊢ (𝑊 ∈ (On ∖
1o) ↔ (𝑊
∈ On ∧ ∅ ∈ 𝑊)) |
65 | 64 | simprbi 496 |
. . . . . . 7
⊢ (𝑊 ∈ (On ∖
1o) → ∅ ∈ 𝑊) |
66 | 63, 65 | syl 17 |
. . . . . 6
⊢ (𝜑 → ∅ ∈ 𝑊) |
67 | | omabs 8441 |
. . . . . 6
⊢ ((((𝐹‘𝑊) ∈ ω ∧ ∅ ∈ (𝐹‘𝑊)) ∧ (𝑊 ∈ On ∧ ∅ ∈ 𝑊)) → ((𝐹‘𝑊) ·o (ω
↑o 𝑊)) =
(ω ↑o 𝑊)) |
68 | 45, 62, 42, 66, 67 | syl22anc 835 |
. . . . 5
⊢ (𝜑 → ((𝐹‘𝑊) ·o (ω
↑o 𝑊)) =
(ω ↑o 𝑊)) |
69 | 68 | f1oeq3d 6697 |
. . . 4
⊢ (𝜑 → ((𝑋 ∘ ◡𝑌):((ω ↑o 𝑊) ·o (𝐹‘𝑊))–1-1-onto→((𝐹‘𝑊) ·o (ω
↑o 𝑊))
↔ (𝑋 ∘ ◡𝑌):((ω ↑o 𝑊) ·o (𝐹‘𝑊))–1-1-onto→(ω ↑o 𝑊))) |
70 | 51, 69 | mpbid 231 |
. . 3
⊢ (𝜑 → (𝑋 ∘ ◡𝑌):((ω ↑o 𝑊) ·o (𝐹‘𝑊))–1-1-onto→(ω ↑o 𝑊)) |
71 | 5, 2, 11, 4, 20, 26, 27, 28, 29, 18, 33 | cnfcom2 9390 |
. . 3
⊢ (𝜑 → (𝑇‘dom 𝐺):𝐵–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) |
72 | | f1oco 6722 |
. . 3
⊢ (((𝑋 ∘ ◡𝑌):((ω ↑o 𝑊) ·o (𝐹‘𝑊))–1-1-onto→(ω ↑o 𝑊) ∧ (𝑇‘dom 𝐺):𝐵–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) → ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)):𝐵–1-1-onto→(ω ↑o 𝑊)) |
73 | 70, 71, 72 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)):𝐵–1-1-onto→(ω ↑o 𝑊)) |
74 | | cnfcom.n |
. . 3
⊢ 𝑁 = ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)) |
75 | | f1oeq1 6688 |
. . 3
⊢ (𝑁 = ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)) → (𝑁:𝐵–1-1-onto→(ω ↑o 𝑊) ↔ ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)):𝐵–1-1-onto→(ω ↑o 𝑊))) |
76 | 74, 75 | ax-mp 5 |
. 2
⊢ (𝑁:𝐵–1-1-onto→(ω ↑o 𝑊) ↔ ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)):𝐵–1-1-onto→(ω ↑o 𝑊)) |
77 | 73, 76 | sylibr 233 |
1
⊢ (𝜑 → 𝑁:𝐵–1-1-onto→(ω ↑o 𝑊)) |