MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosepeq Structured version   Visualization version   GIF version

Theorem nosepeq 27595
Description: The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosepeq (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴𝑋) = (𝐵𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋

Proof of Theorem nosepeq
StepHypRef Expression
1 nosepon 27575 . . . 4 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
2 onelon 6332 . . . 4 (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝑋 ∈ On)
31, 2sylan 580 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝑋 ∈ On)
4 simpr 484 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})
5 fveq2 6822 . . . . 5 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
6 fveq2 6822 . . . . 5 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
75, 6neeq12d 2986 . . . 4 (𝑥 = 𝑋 → ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐴𝑋) ≠ (𝐵𝑋)))
87onnminsb 7735 . . 3 (𝑋 ∈ On → (𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ (𝐴𝑋) ≠ (𝐵𝑋)))
93, 4, 8sylc 65 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ (𝐴𝑋) ≠ (𝐵𝑋))
10 df-ne 2926 . . 3 ((𝐴𝑋) ≠ (𝐵𝑋) ↔ ¬ (𝐴𝑋) = (𝐵𝑋))
1110con2bii 357 . 2 ((𝐴𝑋) = (𝐵𝑋) ↔ ¬ (𝐴𝑋) ≠ (𝐵𝑋))
129, 11sylibr 234 1 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴𝑋) = (𝐵𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3394   cint 4896  Oncon0 6307  cfv 6482   No csur 27549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-1o 8388  df-2o 8389  df-no 27552
This theorem is referenced by:  nosepssdm  27596  nodenselem7  27600
  Copyright terms: Public domain W3C validator