|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nosepeq | Structured version Visualization version GIF version | ||
| Description: The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| nosepeq | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nosepon 27710 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) | |
| 2 | onelon 6409 | . . . 4 ⊢ ((∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ On) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ On) | 
| 4 | simpr 484 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) | |
| 5 | fveq2 6906 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) | |
| 6 | fveq2 6906 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) | |
| 7 | 5, 6 | neeq12d 3002 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐴‘𝑋) ≠ (𝐵‘𝑋))) | 
| 8 | 7 | onnminsb 7819 | . . 3 ⊢ (𝑋 ∈ On → (𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} → ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋))) | 
| 9 | 3, 4, 8 | sylc 65 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋)) | 
| 10 | df-ne 2941 | . . 3 ⊢ ((𝐴‘𝑋) ≠ (𝐵‘𝑋) ↔ ¬ (𝐴‘𝑋) = (𝐵‘𝑋)) | |
| 11 | 10 | con2bii 357 | . 2 ⊢ ((𝐴‘𝑋) = (𝐵‘𝑋) ↔ ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋)) | 
| 12 | 9, 11 | sylibr 234 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {crab 3436 ∩ cint 4946 Oncon0 6384 ‘cfv 6561 No csur 27684 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-1o 8506 df-2o 8507 df-no 27687 | 
| This theorem is referenced by: nosepssdm 27731 nodenselem7 27735 | 
| Copyright terms: Public domain | W3C validator |