![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nosepeq | Structured version Visualization version GIF version |
Description: The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
nosepeq | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosepon 27168 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) | |
2 | onelon 6390 | . . . 4 ⊢ ((∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ On) | |
3 | 1, 2 | sylan 581 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ On) |
4 | simpr 486 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) | |
5 | fveq2 6892 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) | |
6 | fveq2 6892 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) | |
7 | 5, 6 | neeq12d 3003 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐴‘𝑋) ≠ (𝐵‘𝑋))) |
8 | 7 | onnminsb 7787 | . . 3 ⊢ (𝑋 ∈ On → (𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} → ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋))) |
9 | 3, 4, 8 | sylc 65 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋)) |
10 | df-ne 2942 | . . 3 ⊢ ((𝐴‘𝑋) ≠ (𝐵‘𝑋) ↔ ¬ (𝐴‘𝑋) = (𝐵‘𝑋)) | |
11 | 10 | con2bii 358 | . 2 ⊢ ((𝐴‘𝑋) = (𝐵‘𝑋) ↔ ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋)) |
12 | 9, 11 | sylibr 233 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 {crab 3433 ∩ cint 4951 Oncon0 6365 ‘cfv 6544 No csur 27143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-1o 8466 df-2o 8467 df-no 27146 |
This theorem is referenced by: nosepssdm 27189 nodenselem7 27193 |
Copyright terms: Public domain | W3C validator |