![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nosepeq | Structured version Visualization version GIF version |
Description: The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
nosepeq | ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosepon 27514 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) | |
2 | onelon 6379 | . . . 4 ⊢ ((∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ On) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ On) |
4 | simpr 484 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) | |
5 | fveq2 6881 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) | |
6 | fveq2 6881 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) | |
7 | 5, 6 | neeq12d 2994 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐴‘𝑋) ≠ (𝐵‘𝑋))) |
8 | 7 | onnminsb 7780 | . . 3 ⊢ (𝑋 ∈ On → (𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} → ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋))) |
9 | 3, 4, 8 | sylc 65 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋)) |
10 | df-ne 2933 | . . 3 ⊢ ((𝐴‘𝑋) ≠ (𝐵‘𝑋) ↔ ¬ (𝐴‘𝑋) = (𝐵‘𝑋)) | |
11 | 10 | con2bii 357 | . 2 ⊢ ((𝐴‘𝑋) = (𝐵‘𝑋) ↔ ¬ (𝐴‘𝑋) ≠ (𝐵‘𝑋)) |
12 | 9, 11 | sylibr 233 | 1 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 {crab 3424 ∩ cint 4940 Oncon0 6354 ‘cfv 6533 No csur 27489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-1o 8461 df-2o 8462 df-no 27492 |
This theorem is referenced by: nosepssdm 27535 nodenselem7 27539 |
Copyright terms: Public domain | W3C validator |