Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepeq Structured version   Visualization version   GIF version

Theorem nosepeq 33888
Description: The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosepeq (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴𝑋) = (𝐵𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋

Proof of Theorem nosepeq
StepHypRef Expression
1 nosepon 33868 . . . 4 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
2 onelon 6291 . . . 4 (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝑋 ∈ On)
31, 2sylan 580 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝑋 ∈ On)
4 simpr 485 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})
5 fveq2 6774 . . . . 5 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
6 fveq2 6774 . . . . 5 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
75, 6neeq12d 3005 . . . 4 (𝑥 = 𝑋 → ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐴𝑋) ≠ (𝐵𝑋)))
87onnminsb 7649 . . 3 (𝑋 ∈ On → (𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ (𝐴𝑋) ≠ (𝐵𝑋)))
93, 4, 8sylc 65 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ (𝐴𝑋) ≠ (𝐵𝑋))
10 df-ne 2944 . . 3 ((𝐴𝑋) ≠ (𝐵𝑋) ↔ ¬ (𝐴𝑋) = (𝐵𝑋))
1110con2bii 358 . 2 ((𝐴𝑋) = (𝐵𝑋) ↔ ¬ (𝐴𝑋) ≠ (𝐵𝑋))
129, 11sylibr 233 1 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴𝑋) = (𝐵𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068   cint 4879  Oncon0 6266  cfv 6433   No csur 33843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-2o 8298  df-no 33846
This theorem is referenced by:  nosepssdm  33889  nodenselem7  33893
  Copyright terms: Public domain W3C validator