MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco1 Structured version   Visualization version   GIF version

Theorem opco1 7932
Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (𝜑𝐴𝑉)
opco1.exb (𝜑𝐵𝑊)
Assertion
Ref Expression
opco1 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))

Proof of Theorem opco1
StepHypRef Expression
1 df-ov 7255 . . 3 (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩)
21a1i 11 . 2 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩))
3 fo1st 7821 . . . 4 1st :V–onto→V
4 fof 6669 . . . 4 (1st :V–onto→V → 1st :V⟶V)
53, 4mp1i 13 . . 3 (𝜑 → 1st :V⟶V)
6 opex 5372 . . . 4 𝐴, 𝐵⟩ ∈ V
76a1i 11 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ V)
85, 7fvco3d 6847 . 2 (𝜑 → ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩) = (𝐹‘(1st ‘⟨𝐴, 𝐵⟩)))
9 opco1.exa . . . 4 (𝜑𝐴𝑉)
10 opco1.exb . . . 4 (𝜑𝐵𝑊)
11 op1stg 7813 . . . 4 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
129, 10, 11syl2anc 587 . . 3 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
1312fveq2d 6757 . 2 (𝜑 → (𝐹‘(1st ‘⟨𝐴, 𝐵⟩)) = (𝐹𝐴))
142, 8, 133eqtrd 2783 1 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  Vcvv 3423  cop 4564  ccom 5583  wf 6411  ontowfo 6413  cfv 6415  (class class class)co 7252  1st c1st 7799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-fo 6421  df-fv 6423  df-ov 7255  df-1st 7801
This theorem is referenced by:  opco1i  7934
  Copyright terms: Public domain W3C validator