![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opco1 | Structured version Visualization version GIF version |
Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
Ref | Expression |
---|---|
opco1.exa | ā¢ (š ā š“ ā š) |
opco1.exb | ā¢ (š ā šµ ā š) |
Ref | Expression |
---|---|
opco1 | ā¢ (š ā (š“(š¹ ā 1st )šµ) = (š¹āš“)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7416 | . . 3 ā¢ (š“(š¹ ā 1st )šµ) = ((š¹ ā 1st )āāØš“, šµā©) | |
2 | 1 | a1i 11 | . 2 ā¢ (š ā (š“(š¹ ā 1st )šµ) = ((š¹ ā 1st )āāØš“, šµā©)) |
3 | fo1st 7999 | . . . 4 ā¢ 1st :VāontoāV | |
4 | fof 6806 | . . . 4 ā¢ (1st :VāontoāV ā 1st :Vā¶V) | |
5 | 3, 4 | mp1i 13 | . . 3 ā¢ (š ā 1st :Vā¶V) |
6 | opex 5465 | . . . 4 ā¢ āØš“, šµā© ā V | |
7 | 6 | a1i 11 | . . 3 ā¢ (š ā āØš“, šµā© ā V) |
8 | 5, 7 | fvco3d 6992 | . 2 ā¢ (š ā ((š¹ ā 1st )āāØš“, šµā©) = (š¹ā(1st āāØš“, šµā©))) |
9 | opco1.exa | . . . 4 ā¢ (š ā š“ ā š) | |
10 | opco1.exb | . . . 4 ā¢ (š ā šµ ā š) | |
11 | op1stg 7991 | . . . 4 ā¢ ((š“ ā š ā§ šµ ā š) ā (1st āāØš“, šµā©) = š“) | |
12 | 9, 10, 11 | syl2anc 582 | . . 3 ā¢ (š ā (1st āāØš“, šµā©) = š“) |
13 | 12 | fveq2d 6896 | . 2 ā¢ (š ā (š¹ā(1st āāØš“, šµā©)) = (š¹āš“)) |
14 | 2, 8, 13 | 3eqtrd 2774 | 1 ā¢ (š ā (š“(š¹ ā 1st )šµ) = (š¹āš“)) |
Colors of variables: wff setvar class |
Syntax hints: ā wi 4 = wceq 1539 ā wcel 2104 Vcvv 3472 āØcop 4635 ā ccom 5681 ā¶wf 6540 āontoāwfo 6542 ācfv 6544 (class class class)co 7413 1st c1st 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-ov 7416 df-1st 7979 |
This theorem is referenced by: opco1i 8115 |
Copyright terms: Public domain | W3C validator |