| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opco1 | Structured version Visualization version GIF version | ||
| Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
| Ref | Expression |
|---|---|
| opco1.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| opco1.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| opco1 | ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7415 | . . 3 ⊢ (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉)) |
| 3 | fo1st 8015 | . . . 4 ⊢ 1st :V–onto→V | |
| 4 | fof 6799 | . . . 4 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → 1st :V⟶V) |
| 6 | opex 5449 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ V) |
| 8 | 5, 7 | fvco3d 6988 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉) = (𝐹‘(1st ‘〈𝐴, 𝐵〉))) |
| 9 | opco1.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | opco1.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 11 | op1stg 8007 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| 13 | 12 | fveq2d 6889 | . 2 ⊢ (𝜑 → (𝐹‘(1st ‘〈𝐴, 𝐵〉)) = (𝐹‘𝐴)) |
| 14 | 2, 8, 13 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 〈cop 4612 ∘ ccom 5669 ⟶wf 6536 –onto→wfo 6538 ‘cfv 6540 (class class class)co 7412 1st c1st 7993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-ov 7415 df-1st 7995 |
| This theorem is referenced by: opco1i 8131 |
| Copyright terms: Public domain | W3C validator |