![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opco1 | Structured version Visualization version GIF version |
Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
Ref | Expression |
---|---|
opco1.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opco1.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
opco1 | ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7441 | . . 3 ⊢ (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉)) |
3 | fo1st 8042 | . . . 4 ⊢ 1st :V–onto→V | |
4 | fof 6828 | . . . 4 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → 1st :V⟶V) |
6 | opex 5478 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ V) |
8 | 5, 7 | fvco3d 7016 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉) = (𝐹‘(1st ‘〈𝐴, 𝐵〉))) |
9 | opco1.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | opco1.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
11 | op1stg 8034 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
13 | 12 | fveq2d 6918 | . 2 ⊢ (𝜑 → (𝐹‘(1st ‘〈𝐴, 𝐵〉)) = (𝐹‘𝐴)) |
14 | 2, 8, 13 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 〈cop 4640 ∘ ccom 5697 ⟶wf 6565 –onto→wfo 6567 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fo 6575 df-fv 6577 df-ov 7441 df-1st 8022 |
This theorem is referenced by: opco1i 8158 |
Copyright terms: Public domain | W3C validator |