MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco1 Structured version   Visualization version   GIF version

Theorem opco1 8137
Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (𝜑𝐴𝑉)
opco1.exb (𝜑𝐵𝑊)
Assertion
Ref Expression
opco1 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))

Proof of Theorem opco1
StepHypRef Expression
1 df-ov 7427 . . 3 (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩)
21a1i 11 . 2 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩))
3 fo1st 8023 . . . 4 1st :V–onto→V
4 fof 6815 . . . 4 (1st :V–onto→V → 1st :V⟶V)
53, 4mp1i 13 . . 3 (𝜑 → 1st :V⟶V)
6 opex 5470 . . . 4 𝐴, 𝐵⟩ ∈ V
76a1i 11 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ V)
85, 7fvco3d 7002 . 2 (𝜑 → ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩) = (𝐹‘(1st ‘⟨𝐴, 𝐵⟩)))
9 opco1.exa . . . 4 (𝜑𝐴𝑉)
10 opco1.exb . . . 4 (𝜑𝐵𝑊)
11 op1stg 8015 . . . 4 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
129, 10, 11syl2anc 582 . . 3 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
1312fveq2d 6905 . 2 (𝜑 → (𝐹‘(1st ‘⟨𝐴, 𝐵⟩)) = (𝐹𝐴))
142, 8, 133eqtrd 2770 1 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3462  cop 4639  ccom 5686  wf 6550  ontowfo 6552  cfv 6554  (class class class)co 7424  1st c1st 8001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fo 6560  df-fv 6562  df-ov 7427  df-1st 8003
This theorem is referenced by:  opco1i  8139
  Copyright terms: Public domain W3C validator