MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco1 Structured version   Visualization version   GIF version

Theorem opco1 8056
Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (𝜑𝐴𝑉)
opco1.exb (𝜑𝐵𝑊)
Assertion
Ref Expression
opco1 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))

Proof of Theorem opco1
StepHypRef Expression
1 df-ov 7352 . . 3 (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩)
21a1i 11 . 2 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩))
3 fo1st 7944 . . . 4 1st :V–onto→V
4 fof 6736 . . . 4 (1st :V–onto→V → 1st :V⟶V)
53, 4mp1i 13 . . 3 (𝜑 → 1st :V⟶V)
6 opex 5407 . . . 4 𝐴, 𝐵⟩ ∈ V
76a1i 11 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ V)
85, 7fvco3d 6923 . 2 (𝜑 → ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩) = (𝐹‘(1st ‘⟨𝐴, 𝐵⟩)))
9 opco1.exa . . . 4 (𝜑𝐴𝑉)
10 opco1.exb . . . 4 (𝜑𝐵𝑊)
11 op1stg 7936 . . . 4 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
129, 10, 11syl2anc 584 . . 3 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
1312fveq2d 6826 . 2 (𝜑 → (𝐹‘(1st ‘⟨𝐴, 𝐵⟩)) = (𝐹𝐴))
142, 8, 133eqtrd 2768 1 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583  ccom 5623  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  1st c1st 7922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-ov 7352  df-1st 7924
This theorem is referenced by:  opco1i  8058
  Copyright terms: Public domain W3C validator