MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco1 Structured version   Visualization version   GIF version

Theorem opco1 8156
Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (𝜑𝐴𝑉)
opco1.exb (𝜑𝐵𝑊)
Assertion
Ref Expression
opco1 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))

Proof of Theorem opco1
StepHypRef Expression
1 df-ov 7441 . . 3 (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩)
21a1i 11 . 2 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩))
3 fo1st 8042 . . . 4 1st :V–onto→V
4 fof 6828 . . . 4 (1st :V–onto→V → 1st :V⟶V)
53, 4mp1i 13 . . 3 (𝜑 → 1st :V⟶V)
6 opex 5478 . . . 4 𝐴, 𝐵⟩ ∈ V
76a1i 11 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ V)
85, 7fvco3d 7016 . 2 (𝜑 → ((𝐹 ∘ 1st )‘⟨𝐴, 𝐵⟩) = (𝐹‘(1st ‘⟨𝐴, 𝐵⟩)))
9 opco1.exa . . . 4 (𝜑𝐴𝑉)
10 opco1.exb . . . 4 (𝜑𝐵𝑊)
11 op1stg 8034 . . . 4 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
129, 10, 11syl2anc 584 . . 3 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
1312fveq2d 6918 . 2 (𝜑 → (𝐹‘(1st ‘⟨𝐴, 𝐵⟩)) = (𝐹𝐴))
142, 8, 133eqtrd 2781 1 (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3481  cop 4640  ccom 5697  wf 6565  ontowfo 6567  cfv 6569  (class class class)co 7438  1st c1st 8020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fo 6575  df-fv 6577  df-ov 7441  df-1st 8022
This theorem is referenced by:  opco1i  8158
  Copyright terms: Public domain W3C validator