![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opco1 | Structured version Visualization version GIF version |
Description: Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
Ref | Expression |
---|---|
opco1.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opco1.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
opco1 | ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7453 | . . 3 ⊢ (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉)) |
3 | fo1st 8052 | . . . 4 ⊢ 1st :V–onto→V | |
4 | fof 6836 | . . . 4 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → 1st :V⟶V) |
6 | opex 5484 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ V) |
8 | 5, 7 | fvco3d 7024 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 1st )‘〈𝐴, 𝐵〉) = (𝐹‘(1st ‘〈𝐴, 𝐵〉))) |
9 | opco1.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | opco1.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
11 | op1stg 8044 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
12 | 9, 10, 11 | syl2anc 583 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
13 | 12 | fveq2d 6926 | . 2 ⊢ (𝜑 → (𝐹‘(1st ‘〈𝐴, 𝐵〉)) = (𝐹‘𝐴)) |
14 | 2, 8, 13 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ∘ ccom 5704 ⟶wf 6571 –onto→wfo 6573 ‘cfv 6575 (class class class)co 7450 1st c1st 8030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fo 6581 df-fv 6583 df-ov 7453 df-1st 8032 |
This theorem is referenced by: opco1i 8168 |
Copyright terms: Public domain | W3C validator |