| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opco1i | Structured version Visualization version GIF version | ||
| Description: Inference form of opco1 8079. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| opco1i.1 | ⊢ 𝐵 ∈ V |
| opco1i.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| opco1i | ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opco1i.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
| 3 | opco1i.2 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 ∈ V) |
| 5 | 2, 4 | opco1 8079 | . 2 ⊢ (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
| 6 | 5 | mptru 1547 | 1 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3444 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-ov 7372 df-1st 7947 |
| This theorem is referenced by: fpwwe 10575 seq1st 16517 algrf 16519 algrp1 16520 dvnff 25801 dvnp1 25803 |
| Copyright terms: Public domain | W3C validator |