| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opco1i | Structured version Visualization version GIF version | ||
| Description: Inference form of opco1 8129. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| opco1i.1 | ⊢ 𝐵 ∈ V |
| opco1i.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| opco1i | ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opco1i.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
| 3 | opco1i.2 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 ∈ V) |
| 5 | 2, 4 | opco1 8129 | . 2 ⊢ (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
| 6 | 5 | mptru 1546 | 1 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3463 ∘ ccom 5669 ‘cfv 6540 (class class class)co 7412 1st c1st 7993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-ov 7415 df-1st 7995 |
| This theorem is referenced by: fpwwe 10667 seq1st 16589 algrf 16591 algrp1 16592 dvnff 25894 dvnp1 25896 |
| Copyright terms: Public domain | W3C validator |