Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opco1i | Structured version Visualization version GIF version |
Description: Inference form of opco1 8032. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
opco1i.1 | ⊢ 𝐵 ∈ V |
opco1i.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
opco1i | ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opco1i.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
3 | opco1i.2 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 ∈ V) |
5 | 2, 4 | opco1 8032 | . 2 ⊢ (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
6 | 5 | mptru 1547 | 1 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 Vcvv 3441 ∘ ccom 5625 ‘cfv 6480 (class class class)co 7338 1st c1st 7898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-fo 6486 df-fv 6488 df-ov 7341 df-1st 7900 |
This theorem is referenced by: fpwwe 10504 seq1st 16374 algrf 16376 algrp1 16377 dvnff 25194 dvnp1 25196 |
Copyright terms: Public domain | W3C validator |