MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco1i Structured version   Visualization version   GIF version

Theorem opco1i 8113
Description: Inference form of opco1 8111. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
opco1i.1 𝐵 ∈ V
opco1i.2 𝐶 ∈ V
Assertion
Ref Expression
opco1i (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem opco1i
StepHypRef Expression
1 opco1i.1 . . . 4 𝐵 ∈ V
21a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
3 opco1i.2 . . . 4 𝐶 ∈ V
43a1i 11 . . 3 (⊤ → 𝐶 ∈ V)
52, 4opco1 8111 . 2 (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
65mptru 1547 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3455  ccom 5650  cfv 6519  (class class class)co 7394  1st c1st 7975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fo 6525  df-fv 6527  df-ov 7397  df-1st 7977
This theorem is referenced by:  fpwwe  10617  seq1st  16547  algrf  16549  algrp1  16550  dvnff  25832  dvnp1  25834
  Copyright terms: Public domain W3C validator