Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opco1i | Structured version Visualization version GIF version |
Description: Inference form of opco1 7932. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
opco1i.1 | ⊢ 𝐵 ∈ V |
opco1i.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
opco1i | ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opco1i.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
3 | opco1i.2 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 ∈ V) |
5 | 2, 4 | opco1 7932 | . 2 ⊢ (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
6 | 5 | mptru 1550 | 1 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ⊤wtru 1544 ∈ wcel 2112 Vcvv 3423 ∘ ccom 5583 ‘cfv 6415 (class class class)co 7252 1st c1st 7799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-fo 6421 df-fv 6423 df-ov 7255 df-1st 7801 |
This theorem is referenced by: fpwwe 10308 seq1st 16179 algrf 16181 algrp1 16182 dvnff 24967 dvnp1 24969 |
Copyright terms: Public domain | W3C validator |