MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco1i Structured version   Visualization version   GIF version

Theorem opco1i 8131
Description: Inference form of opco1 8129. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
opco1i.1 𝐵 ∈ V
opco1i.2 𝐶 ∈ V
Assertion
Ref Expression
opco1i (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem opco1i
StepHypRef Expression
1 opco1i.1 . . . 4 𝐵 ∈ V
21a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
3 opco1i.2 . . . 4 𝐶 ∈ V
43a1i 11 . . 3 (⊤ → 𝐶 ∈ V)
52, 4opco1 8129 . 2 (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
65mptru 1546 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wcel 2107  Vcvv 3463  ccom 5669  cfv 6540  (class class class)co 7412  1st c1st 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-ov 7415  df-1st 7995
This theorem is referenced by:  fpwwe  10667  seq1st  16589  algrf  16591  algrp1  16592  dvnff  25894  dvnp1  25896
  Copyright terms: Public domain W3C validator