MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco1i Structured version   Visualization version   GIF version

Theorem opco1i 8158
Description: Inference form of opco1 8156. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
opco1i.1 𝐵 ∈ V
opco1i.2 𝐶 ∈ V
Assertion
Ref Expression
opco1i (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem opco1i
StepHypRef Expression
1 opco1i.1 . . . 4 𝐵 ∈ V
21a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
3 opco1i.2 . . . 4 𝐶 ∈ V
43a1i 11 . . 3 (⊤ → 𝐶 ∈ V)
52, 4opco1 8156 . 2 (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
65mptru 1546 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wcel 2108  Vcvv 3481  ccom 5697  cfv 6569  (class class class)co 7438  1st c1st 8020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fo 6575  df-fv 6577  df-ov 7441  df-1st 8022
This theorem is referenced by:  fpwwe  10693  seq1st  16614  algrf  16616  algrp1  16617  dvnff  25985  dvnp1  25987
  Copyright terms: Public domain W3C validator