![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opco1i | Structured version Visualization version GIF version |
Description: Inference form of opco1 8156. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
opco1i.1 | ⊢ 𝐵 ∈ V |
opco1i.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
opco1i | ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opco1i.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
3 | opco1i.2 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 ∈ V) |
5 | 2, 4 | opco1 8156 | . 2 ⊢ (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) |
6 | 5 | mptru 1546 | 1 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3481 ∘ ccom 5697 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fo 6575 df-fv 6577 df-ov 7441 df-1st 8022 |
This theorem is referenced by: fpwwe 10693 seq1st 16614 algrf 16616 algrp1 16617 dvnff 25985 dvnp1 25987 |
Copyright terms: Public domain | W3C validator |