MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco1i Structured version   Visualization version   GIF version

Theorem opco1i 7934
Description: Inference form of opco1 7932. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
opco1i.1 𝐵 ∈ V
opco1i.2 𝐶 ∈ V
Assertion
Ref Expression
opco1i (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem opco1i
StepHypRef Expression
1 opco1i.1 . . . 4 𝐵 ∈ V
21a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
3 opco1i.2 . . . 4 𝐶 ∈ V
43a1i 11 . . 3 (⊤ → 𝐶 ∈ V)
52, 4opco1 7932 . 2 (⊤ → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
65mptru 1550 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wtru 1544  wcel 2112  Vcvv 3423  ccom 5583  cfv 6415  (class class class)co 7252  1st c1st 7799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-fo 6421  df-fv 6423  df-ov 7255  df-1st 7801
This theorem is referenced by:  fpwwe  10308  seq1st  16179  algrf  16181  algrp1  16182  dvnff  24967  dvnp1  24969
  Copyright terms: Public domain W3C validator