![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opco2 | Structured version Visualization version GIF version |
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.) |
Ref | Expression |
---|---|
opco1.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opco1.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
opco2 | ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7427 | . . 3 ⊢ (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉)) |
3 | fo2nd 8024 | . . . 4 ⊢ 2nd :V–onto→V | |
4 | fof 6815 | . . . 4 ⊢ (2nd :V–onto→V → 2nd :V⟶V) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → 2nd :V⟶V) |
6 | opex 5470 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ V) |
8 | 5, 7 | fvco3d 7002 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) = (𝐹‘(2nd ‘〈𝐴, 𝐵〉))) |
9 | opco1.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | opco1.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
11 | op2ndg 8016 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
12 | 9, 10, 11 | syl2anc 582 | . . 3 ⊢ (𝜑 → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
13 | 12 | fveq2d 6905 | . 2 ⊢ (𝜑 → (𝐹‘(2nd ‘〈𝐴, 𝐵〉)) = (𝐹‘𝐵)) |
14 | 2, 8, 13 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 〈cop 4639 ∘ ccom 5686 ⟶wf 6550 –onto→wfo 6552 ‘cfv 6554 (class class class)co 7424 2nd c2nd 8002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fo 6560 df-fv 6562 df-ov 7427 df-2nd 8004 |
This theorem is referenced by: dfwrecsOLD 8328 wfr2a 8364 dfrecs3 8402 |
Copyright terms: Public domain | W3C validator |