MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco2 Structured version   Visualization version   GIF version

Theorem opco2 8165
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (𝜑𝐴𝑉)
opco1.exb (𝜑𝐵𝑊)
Assertion
Ref Expression
opco2 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))

Proof of Theorem opco2
StepHypRef Expression
1 df-ov 7451 . . 3 (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩)
21a1i 11 . 2 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩))
3 fo2nd 8051 . . . 4 2nd :V–onto→V
4 fof 6834 . . . 4 (2nd :V–onto→V → 2nd :V⟶V)
53, 4mp1i 13 . . 3 (𝜑 → 2nd :V⟶V)
6 opex 5484 . . . 4 𝐴, 𝐵⟩ ∈ V
76a1i 11 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ V)
85, 7fvco3d 7022 . 2 (𝜑 → ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩) = (𝐹‘(2nd ‘⟨𝐴, 𝐵⟩)))
9 opco1.exa . . . 4 (𝜑𝐴𝑉)
10 opco1.exb . . . 4 (𝜑𝐵𝑊)
11 op2ndg 8043 . . . 4 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
129, 10, 11syl2anc 583 . . 3 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1312fveq2d 6924 . 2 (𝜑 → (𝐹‘(2nd ‘⟨𝐴, 𝐵⟩)) = (𝐹𝐵))
142, 8, 133eqtrd 2784 1 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  ccom 5704  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-2nd 8031
This theorem is referenced by:  dfwrecsOLD  8354  wfr2a  8390  dfrecs3  8428
  Copyright terms: Public domain W3C validator