MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco2 Structured version   Visualization version   GIF version

Theorem opco2 8128
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (𝜑𝐴𝑉)
opco1.exb (𝜑𝐵𝑊)
Assertion
Ref Expression
opco2 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))

Proof of Theorem opco2
StepHypRef Expression
1 df-ov 7413 . . 3 (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩)
21a1i 11 . 2 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩))
3 fo2nd 8014 . . . 4 2nd :V–onto→V
4 fof 6795 . . . 4 (2nd :V–onto→V → 2nd :V⟶V)
53, 4mp1i 13 . . 3 (𝜑 → 2nd :V⟶V)
6 opex 5444 . . . 4 𝐴, 𝐵⟩ ∈ V
76a1i 11 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ V)
85, 7fvco3d 6984 . 2 (𝜑 → ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩) = (𝐹‘(2nd ‘⟨𝐴, 𝐵⟩)))
9 opco1.exa . . . 4 (𝜑𝐴𝑉)
10 opco1.exb . . . 4 (𝜑𝐵𝑊)
11 op2ndg 8006 . . . 4 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
129, 10, 11syl2anc 584 . . 3 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1312fveq2d 6885 . 2 (𝜑 → (𝐹‘(2nd ‘⟨𝐴, 𝐵⟩)) = (𝐹𝐵))
142, 8, 133eqtrd 2775 1 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612  ccom 5663  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-ov 7413  df-2nd 7994
This theorem is referenced by:  dfwrecsOLD  8317  wfr2a  8353  dfrecs3  8391
  Copyright terms: Public domain W3C validator