| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opco2 | Structured version Visualization version GIF version | ||
| Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.) |
| Ref | Expression |
|---|---|
| opco1.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| opco1.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| opco2 | ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7352 | . . 3 ⊢ (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉)) |
| 3 | fo2nd 7945 | . . . 4 ⊢ 2nd :V–onto→V | |
| 4 | fof 6736 | . . . 4 ⊢ (2nd :V–onto→V → 2nd :V⟶V) | |
| 5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → 2nd :V⟶V) |
| 6 | opex 5407 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ V) |
| 8 | 5, 7 | fvco3d 6923 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) = (𝐹‘(2nd ‘〈𝐴, 𝐵〉))) |
| 9 | opco1.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | opco1.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 11 | op2ndg 7937 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| 13 | 12 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝐹‘(2nd ‘〈𝐴, 𝐵〉)) = (𝐹‘𝐵)) |
| 14 | 2, 8, 13 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ∘ ccom 5623 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 (class class class)co 7349 2nd c2nd 7923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-ov 7352 df-2nd 7925 |
| This theorem is referenced by: wfr2a 8258 dfrecs3 8295 |
| Copyright terms: Public domain | W3C validator |