Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opco2 | Structured version Visualization version GIF version |
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.) |
Ref | Expression |
---|---|
opco1.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opco1.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
opco2 | ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7255 | . . 3 ⊢ (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉)) |
3 | fo2nd 7822 | . . . 4 ⊢ 2nd :V–onto→V | |
4 | fof 6669 | . . . 4 ⊢ (2nd :V–onto→V → 2nd :V⟶V) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → 2nd :V⟶V) |
6 | opex 5372 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ V) |
8 | 5, 7 | fvco3d 6847 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) = (𝐹‘(2nd ‘〈𝐴, 𝐵〉))) |
9 | opco1.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | opco1.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
11 | op2ndg 7814 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
12 | 9, 10, 11 | syl2anc 587 | . . 3 ⊢ (𝜑 → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
13 | 12 | fveq2d 6757 | . 2 ⊢ (𝜑 → (𝐹‘(2nd ‘〈𝐴, 𝐵〉)) = (𝐹‘𝐵)) |
14 | 2, 8, 13 | 3eqtrd 2783 | 1 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 Vcvv 3423 〈cop 4564 ∘ ccom 5583 ⟶wf 6411 –onto→wfo 6413 ‘cfv 6415 (class class class)co 7252 2nd c2nd 7800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-fo 6421 df-fv 6423 df-ov 7255 df-2nd 7802 |
This theorem is referenced by: dfwrecs2 35144 |
Copyright terms: Public domain | W3C validator |