| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opco2 | Structured version Visualization version GIF version | ||
| Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.) |
| Ref | Expression |
|---|---|
| opco1.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| opco1.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| opco2 | ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . . 3 ⊢ (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉)) |
| 3 | fo2nd 7992 | . . . 4 ⊢ 2nd :V–onto→V | |
| 4 | fof 6775 | . . . 4 ⊢ (2nd :V–onto→V → 2nd :V⟶V) | |
| 5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → 2nd :V⟶V) |
| 6 | opex 5427 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ V) |
| 8 | 5, 7 | fvco3d 6964 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) = (𝐹‘(2nd ‘〈𝐴, 𝐵〉))) |
| 9 | opco1.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | opco1.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 11 | op2ndg 7984 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| 13 | 12 | fveq2d 6865 | . 2 ⊢ (𝜑 → (𝐹‘(2nd ‘〈𝐴, 𝐵〉)) = (𝐹‘𝐵)) |
| 14 | 2, 8, 13 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ∘ ccom 5645 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 (class class class)co 7390 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-ov 7393 df-2nd 7972 |
| This theorem is referenced by: wfr2a 8307 dfrecs3 8344 |
| Copyright terms: Public domain | W3C validator |