MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco2 Structured version   Visualization version   GIF version

Theorem opco2 7954
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (𝜑𝐴𝑉)
opco1.exb (𝜑𝐵𝑊)
Assertion
Ref Expression
opco2 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))

Proof of Theorem opco2
StepHypRef Expression
1 df-ov 7272 . . 3 (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩)
21a1i 11 . 2 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩))
3 fo2nd 7843 . . . 4 2nd :V–onto→V
4 fof 6682 . . . 4 (2nd :V–onto→V → 2nd :V⟶V)
53, 4mp1i 13 . . 3 (𝜑 → 2nd :V⟶V)
6 opex 5379 . . . 4 𝐴, 𝐵⟩ ∈ V
76a1i 11 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ V)
85, 7fvco3d 6862 . 2 (𝜑 → ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩) = (𝐹‘(2nd ‘⟨𝐴, 𝐵⟩)))
9 opco1.exa . . . 4 (𝜑𝐴𝑉)
10 opco1.exb . . . 4 (𝜑𝐵𝑊)
11 op2ndg 7835 . . . 4 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
129, 10, 11syl2anc 584 . . 3 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1312fveq2d 6772 . 2 (𝜑 → (𝐹‘(2nd ‘⟨𝐴, 𝐵⟩)) = (𝐹𝐵))
142, 8, 133eqtrd 2782 1 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3431  cop 4569  ccom 5590  wf 6424  ontowfo 6426  cfv 6428  (class class class)co 7269  2nd c2nd 7821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5486  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-fo 6434  df-fv 6436  df-ov 7272  df-2nd 7823
This theorem is referenced by:  dfwrecsOLD  8118  wfr2a  8154  dfrecs3  8192
  Copyright terms: Public domain W3C validator