MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco2 Structured version   Visualization version   GIF version

Theorem opco2 8054
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (𝜑𝐴𝑉)
opco1.exb (𝜑𝐵𝑊)
Assertion
Ref Expression
opco2 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))

Proof of Theorem opco2
StepHypRef Expression
1 df-ov 7349 . . 3 (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩)
21a1i 11 . 2 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩))
3 fo2nd 7942 . . . 4 2nd :V–onto→V
4 fof 6735 . . . 4 (2nd :V–onto→V → 2nd :V⟶V)
53, 4mp1i 13 . . 3 (𝜑 → 2nd :V⟶V)
6 opex 5402 . . . 4 𝐴, 𝐵⟩ ∈ V
76a1i 11 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ V)
85, 7fvco3d 6922 . 2 (𝜑 → ((𝐹 ∘ 2nd )‘⟨𝐴, 𝐵⟩) = (𝐹‘(2nd ‘⟨𝐴, 𝐵⟩)))
9 opco1.exa . . . 4 (𝜑𝐴𝑉)
10 opco1.exb . . . 4 (𝜑𝐵𝑊)
11 op2ndg 7934 . . . 4 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
129, 10, 11syl2anc 584 . . 3 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1312fveq2d 6826 . 2 (𝜑 → (𝐹‘(2nd ‘⟨𝐴, 𝐵⟩)) = (𝐹𝐵))
142, 8, 133eqtrd 2770 1 (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  ccom 5618  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-ov 7349  df-2nd 7922
This theorem is referenced by:  wfr2a  8255  dfrecs3  8292
  Copyright terms: Public domain W3C validator