![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opco2 | Structured version Visualization version GIF version |
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.) |
Ref | Expression |
---|---|
opco1.exa | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opco1.exb | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
opco2 | ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7434 | . . 3 ⊢ (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉)) |
3 | fo2nd 8034 | . . . 4 ⊢ 2nd :V–onto→V | |
4 | fof 6821 | . . . 4 ⊢ (2nd :V–onto→V → 2nd :V⟶V) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → 2nd :V⟶V) |
6 | opex 5475 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ V) |
8 | 5, 7 | fvco3d 7009 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 2nd )‘〈𝐴, 𝐵〉) = (𝐹‘(2nd ‘〈𝐴, 𝐵〉))) |
9 | opco1.exa | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | opco1.exb | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
11 | op2ndg 8026 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
13 | 12 | fveq2d 6911 | . 2 ⊢ (𝜑 → (𝐹‘(2nd ‘〈𝐴, 𝐵〉)) = (𝐹‘𝐵)) |
14 | 2, 8, 13 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 ∘ ccom 5693 ⟶wf 6559 –onto→wfo 6561 ‘cfv 6563 (class class class)co 7431 2nd c2nd 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-ov 7434 df-2nd 8014 |
This theorem is referenced by: dfwrecsOLD 8337 wfr2a 8373 dfrecs3 8411 |
Copyright terms: Public domain | W3C validator |