MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opco2 Structured version   Visualization version   GIF version

Theorem opco2 8110
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
opco1.exa (šœ‘ ā†’ š“ āˆˆ š‘‰)
opco1.exb (šœ‘ ā†’ šµ āˆˆ š‘Š)
Assertion
Ref Expression
opco2 (šœ‘ ā†’ (š“(š¹ āˆ˜ 2nd )šµ) = (š¹ā€˜šµ))

Proof of Theorem opco2
StepHypRef Expression
1 df-ov 7412 . . 3 (š“(š¹ āˆ˜ 2nd )šµ) = ((š¹ āˆ˜ 2nd )ā€˜āŸØš“, šµāŸ©)
21a1i 11 . 2 (šœ‘ ā†’ (š“(š¹ āˆ˜ 2nd )šµ) = ((š¹ āˆ˜ 2nd )ā€˜āŸØš“, šµāŸ©))
3 fo2nd 7996 . . . 4 2nd :Vā€“ontoā†’V
4 fof 6806 . . . 4 (2nd :Vā€“ontoā†’V ā†’ 2nd :VāŸ¶V)
53, 4mp1i 13 . . 3 (šœ‘ ā†’ 2nd :VāŸ¶V)
6 opex 5465 . . . 4 āŸØš“, šµāŸ© āˆˆ V
76a1i 11 . . 3 (šœ‘ ā†’ āŸØš“, šµāŸ© āˆˆ V)
85, 7fvco3d 6992 . 2 (šœ‘ ā†’ ((š¹ āˆ˜ 2nd )ā€˜āŸØš“, šµāŸ©) = (š¹ā€˜(2nd ā€˜āŸØš“, šµāŸ©)))
9 opco1.exa . . . 4 (šœ‘ ā†’ š“ āˆˆ š‘‰)
10 opco1.exb . . . 4 (šœ‘ ā†’ šµ āˆˆ š‘Š)
11 op2ndg 7988 . . . 4 ((š“ āˆˆ š‘‰ āˆ§ šµ āˆˆ š‘Š) ā†’ (2nd ā€˜āŸØš“, šµāŸ©) = šµ)
129, 10, 11syl2anc 585 . . 3 (šœ‘ ā†’ (2nd ā€˜āŸØš“, šµāŸ©) = šµ)
1312fveq2d 6896 . 2 (šœ‘ ā†’ (š¹ā€˜(2nd ā€˜āŸØš“, šµāŸ©)) = (š¹ā€˜šµ))
142, 8, 133eqtrd 2777 1 (šœ‘ ā†’ (š“(š¹ āˆ˜ 2nd )šµ) = (š¹ā€˜šµ))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   = wceq 1542   āˆˆ wcel 2107  Vcvv 3475  āŸØcop 4635   āˆ˜ ccom 5681  āŸ¶wf 6540  ā€“ontoā†’wfo 6542  ā€˜cfv 6544  (class class class)co 7409  2nd c2nd 7974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-ov 7412  df-2nd 7976
This theorem is referenced by:  dfwrecsOLD  8298  wfr2a  8334  dfrecs3  8372
  Copyright terms: Public domain W3C validator