Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppff1 Structured version   Visualization version   GIF version

Theorem oppff1 49137
Description: The operation generating opposite functors is injective. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
oppff1.o 𝑂 = (oppCat‘𝐶)
oppff1.p 𝑃 = (oppCat‘𝐷)
Assertion
Ref Expression
oppff1 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)

Proof of Theorem oppff1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppffn 49113 . . . 4 oppFunc Fn (V × V)
2 relfunc 17824 . . . . 5 Rel (𝐶 Func 𝐷)
3 df-rel 5645 . . . . 5 (Rel (𝐶 Func 𝐷) ↔ (𝐶 Func 𝐷) ⊆ (V × V))
42, 3mpbi 230 . . . 4 (𝐶 Func 𝐷) ⊆ (V × V)
5 fnssres 6641 . . . 4 (( oppFunc Fn (V × V) ∧ (𝐶 Func 𝐷) ⊆ (V × V)) → ( oppFunc ↾ (𝐶 Func 𝐷)) Fn (𝐶 Func 𝐷))
61, 4, 5mp2an 692 . . 3 ( oppFunc ↾ (𝐶 Func 𝐷)) Fn (𝐶 Func 𝐷)
7 fvres 6877 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = ( oppFunc ‘𝑓))
8 oppff1.o . . . . . 6 𝑂 = (oppCat‘𝐶)
9 oppff1.p . . . . . 6 𝑃 = (oppCat‘𝐷)
10 id 22 . . . . . 6 (𝑓 ∈ (𝐶 Func 𝐷) → 𝑓 ∈ (𝐶 Func 𝐷))
118, 9, 10oppfoppc2 49131 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝑓) ∈ (𝑂 Func 𝑃))
127, 11eqeltrd 2828 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) ∈ (𝑂 Func 𝑃))
1312rgen 3046 . . 3 𝑓 ∈ (𝐶 Func 𝐷)(( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) ∈ (𝑂 Func 𝑃)
14 ffnfv 7091 . . 3 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)) Fn (𝐶 Func 𝐷) ∧ ∀𝑓 ∈ (𝐶 Func 𝐷)(( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) ∈ (𝑂 Func 𝑃)))
156, 13, 14mpbir2an 711 . 2 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)
16 simpl 482 . . . . . 6 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
1716fvresd 6878 . . . . 5 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = ( oppFunc ‘𝑓))
18 simpr 484 . . . . . 6 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → 𝑔 ∈ (𝐶 Func 𝐷))
1918fvresd 6878 . . . . 5 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) = ( oppFunc ‘𝑔))
2017, 19eqeq12d 2745 . . . 4 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ((( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) ↔ ( oppFunc ‘𝑓) = ( oppFunc ‘𝑔)))
21 fveq2 6858 . . . . 5 (( oppFunc ‘𝑓) = ( oppFunc ‘𝑔) → ( oppFunc ‘( oppFunc ‘𝑓)) = ( oppFunc ‘( oppFunc ‘𝑔)))
228, 9, 16oppfoppc2 49131 . . . . . . 7 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ( oppFunc ‘𝑓) ∈ (𝑂 Func 𝑃))
23 relfunc 17824 . . . . . . 7 Rel (𝑂 Func 𝑃)
24 eqid 2729 . . . . . . 7 ( oppFunc ‘𝑓) = ( oppFunc ‘𝑓)
2522, 23, 242oppf 49121 . . . . . 6 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ( oppFunc ‘( oppFunc ‘𝑓)) = 𝑓)
268, 9, 18oppfoppc2 49131 . . . . . . 7 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ( oppFunc ‘𝑔) ∈ (𝑂 Func 𝑃))
27 eqid 2729 . . . . . . 7 ( oppFunc ‘𝑔) = ( oppFunc ‘𝑔)
2826, 23, 272oppf 49121 . . . . . 6 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ( oppFunc ‘( oppFunc ‘𝑔)) = 𝑔)
2925, 28eqeq12d 2745 . . . . 5 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (( oppFunc ‘( oppFunc ‘𝑓)) = ( oppFunc ‘( oppFunc ‘𝑔)) ↔ 𝑓 = 𝑔))
3021, 29imbitrid 244 . . . 4 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (( oppFunc ‘𝑓) = ( oppFunc ‘𝑔) → 𝑓 = 𝑔))
3120, 30sylbid 240 . . 3 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ((( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) → 𝑓 = 𝑔))
3231rgen2 3177 . 2 𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)((( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) → 𝑓 = 𝑔)
33 dff13 7229 . 2 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ∧ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)((( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) → 𝑓 = 𝑔)))
3415, 32, 33mpbir2an 711 1 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914   × cxp 5636  cres 5640  Rel wrel 5643   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  oppCatcoppc 17672   Func cfunc 17816   oppFunc coppf 49111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-oppc 17673  df-func 17820  df-oppf 49112
This theorem is referenced by:  oppff1o  49138  fucoppcid  49397
  Copyright terms: Public domain W3C validator