Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppff1 Structured version   Visualization version   GIF version

Theorem oppff1 49273
Description: The operation generating opposite functors is injective. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
oppff1.o 𝑂 = (oppCat‘𝐶)
oppff1.p 𝑃 = (oppCat‘𝐷)
Assertion
Ref Expression
oppff1 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)

Proof of Theorem oppff1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppffn 49249 . . . 4 oppFunc Fn (V × V)
2 relfunc 17771 . . . . 5 Rel (𝐶 Func 𝐷)
3 df-rel 5626 . . . . 5 (Rel (𝐶 Func 𝐷) ↔ (𝐶 Func 𝐷) ⊆ (V × V))
42, 3mpbi 230 . . . 4 (𝐶 Func 𝐷) ⊆ (V × V)
5 fnssres 6609 . . . 4 (( oppFunc Fn (V × V) ∧ (𝐶 Func 𝐷) ⊆ (V × V)) → ( oppFunc ↾ (𝐶 Func 𝐷)) Fn (𝐶 Func 𝐷))
61, 4, 5mp2an 692 . . 3 ( oppFunc ↾ (𝐶 Func 𝐷)) Fn (𝐶 Func 𝐷)
7 fvres 6847 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = ( oppFunc ‘𝑓))
8 oppff1.o . . . . . 6 𝑂 = (oppCat‘𝐶)
9 oppff1.p . . . . . 6 𝑃 = (oppCat‘𝐷)
10 id 22 . . . . . 6 (𝑓 ∈ (𝐶 Func 𝐷) → 𝑓 ∈ (𝐶 Func 𝐷))
118, 9, 10oppfoppc2 49267 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝑓) ∈ (𝑂 Func 𝑃))
127, 11eqeltrd 2833 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) ∈ (𝑂 Func 𝑃))
1312rgen 3050 . . 3 𝑓 ∈ (𝐶 Func 𝐷)(( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) ∈ (𝑂 Func 𝑃)
14 ffnfv 7058 . . 3 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)) Fn (𝐶 Func 𝐷) ∧ ∀𝑓 ∈ (𝐶 Func 𝐷)(( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) ∈ (𝑂 Func 𝑃)))
156, 13, 14mpbir2an 711 . 2 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)
16 simpl 482 . . . . . 6 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
1716fvresd 6848 . . . . 5 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = ( oppFunc ‘𝑓))
18 simpr 484 . . . . . 6 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → 𝑔 ∈ (𝐶 Func 𝐷))
1918fvresd 6848 . . . . 5 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) = ( oppFunc ‘𝑔))
2017, 19eqeq12d 2749 . . . 4 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ((( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) ↔ ( oppFunc ‘𝑓) = ( oppFunc ‘𝑔)))
21 fveq2 6828 . . . . 5 (( oppFunc ‘𝑓) = ( oppFunc ‘𝑔) → ( oppFunc ‘( oppFunc ‘𝑓)) = ( oppFunc ‘( oppFunc ‘𝑔)))
228, 9, 16oppfoppc2 49267 . . . . . . 7 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ( oppFunc ‘𝑓) ∈ (𝑂 Func 𝑃))
23 relfunc 17771 . . . . . . 7 Rel (𝑂 Func 𝑃)
24 eqid 2733 . . . . . . 7 ( oppFunc ‘𝑓) = ( oppFunc ‘𝑓)
2522, 23, 242oppf 49257 . . . . . 6 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ( oppFunc ‘( oppFunc ‘𝑓)) = 𝑓)
268, 9, 18oppfoppc2 49267 . . . . . . 7 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ( oppFunc ‘𝑔) ∈ (𝑂 Func 𝑃))
27 eqid 2733 . . . . . . 7 ( oppFunc ‘𝑔) = ( oppFunc ‘𝑔)
2826, 23, 272oppf 49257 . . . . . 6 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ( oppFunc ‘( oppFunc ‘𝑔)) = 𝑔)
2925, 28eqeq12d 2749 . . . . 5 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (( oppFunc ‘( oppFunc ‘𝑓)) = ( oppFunc ‘( oppFunc ‘𝑔)) ↔ 𝑓 = 𝑔))
3021, 29imbitrid 244 . . . 4 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (( oppFunc ‘𝑓) = ( oppFunc ‘𝑔) → 𝑓 = 𝑔))
3120, 30sylbid 240 . . 3 ((𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → ((( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) → 𝑓 = 𝑔))
3231rgen2 3173 . 2 𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)((( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) → 𝑓 = 𝑔)
33 dff13 7194 . 2 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ∧ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)((( oppFunc ↾ (𝐶 Func 𝐷))‘𝑓) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) → 𝑓 = 𝑔)))
3415, 32, 33mpbir2an 711 1 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898   × cxp 5617  cres 5621  Rel wrel 5624   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7352  oppCatcoppc 17619   Func cfunc 17763   oppFunc coppf 49247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-oppc 17620  df-func 17767  df-oppf 49248
This theorem is referenced by:  oppff1o  49274  fucoppcid  49533
  Copyright terms: Public domain W3C validator