MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovresd Structured version   Visualization version   GIF version

Theorem ovresd 7417
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ovresd.1 (𝜑𝐴𝑋)
ovresd.2 (𝜑𝐵𝑋)
Assertion
Ref Expression
ovresd (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))

Proof of Theorem ovresd
StepHypRef Expression
1 ovresd.1 . 2 (𝜑𝐴𝑋)
2 ovresd.2 . 2 (𝜑𝐵𝑋)
3 ovres 7416 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   × cxp 5578  cres 5582  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  sscres  17452  fullsubc  17481  fullresc  17482  funcres2c  17533  psmetres2  23375  xmetres2  23422  prdsdsf  23428  xpsdsval  23442  xmssym  23526  xmstri2  23527  mstri2  23528  xmstri  23529  mstri  23530  xmstri3  23531  mstri3  23532  msrtri  23533  tmsxpsval  23600  ngptgp  23698  nlmvscn  23757  nrginvrcn  23762  nghmcn  23815  cnmpt1ds  23911  cnmpt2ds  23912  ipcn  24315  caussi  24366  causs  24367  minveclem2  24495  minveclem3b  24497  minveclem3  24498  minveclem4  24501  minveclem6  24503  ftc1lem6  25110  ulmdvlem1  25464  abelth  25505  cxpcn3  25806  rlimcnp  26020  hhssnv  29527  madjusmdetlem3  31681  qqhcn  31841  qqhucn  31842  ftc1cnnc  35776  ismtyres  35893  isdrngo2  36043  rngchom  45413  ringchom  45459  irinitoringc  45515  rhmsubclem4  45535
  Copyright terms: Public domain W3C validator