MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovresd Structured version   Visualization version   GIF version

Theorem ovresd 7516
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ovresd.1 (𝜑𝐴𝑋)
ovresd.2 (𝜑𝐵𝑋)
Assertion
Ref Expression
ovresd (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))

Proof of Theorem ovresd
StepHypRef Expression
1 ovresd.1 . 2 (𝜑𝐴𝑋)
2 ovresd.2 . 2 (𝜑𝐵𝑋)
3 ovres 7515 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   × cxp 5617  cres 5621  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-res 5631  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by:  sscres  17730  fullsubc  17757  fullresc  17758  funcres2c  17810  rngchom  20508  ringchom  20537  rhmsubclem4  20573  irinitoringc  21386  psmetres2  24200  xmetres2  24247  prdsdsf  24253  xpsdsval  24267  xmssym  24351  xmstri2  24352  mstri2  24353  xmstri  24354  mstri  24355  xmstri3  24356  mstri3  24357  msrtri  24358  tmsxpsval  24424  ngptgp  24522  nlmvscn  24573  nrginvrcn  24578  nghmcn  24631  cnmpt1ds  24729  cnmpt2ds  24730  ipcn  25144  caussi  25195  causs  25196  minveclem2  25324  minveclem3b  25326  minveclem3  25327  minveclem4  25330  minveclem6  25332  ftc1lem6  25946  ulmdvlem1  26307  abelth  26349  cxpcn3  26656  rlimcnp  26873  zsoring  28301  hhssnv  31208  madjusmdetlem3  33796  qqhcn  33958  qqhucn  33959  ftc1cnnc  37672  ismtyres  37788  isdrngo2  37938  naddcnffo  43337
  Copyright terms: Public domain W3C validator