MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovresd Structured version   Visualization version   GIF version

Theorem ovresd 7439
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ovresd.1 (𝜑𝐴𝑋)
ovresd.2 (𝜑𝐵𝑋)
Assertion
Ref Expression
ovresd (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))

Proof of Theorem ovresd
StepHypRef Expression
1 ovresd.1 . 2 (𝜑𝐴𝑋)
2 ovresd.2 . 2 (𝜑𝐵𝑋)
3 ovres 7438 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106   × cxp 5587  cres 5591  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  sscres  17535  fullsubc  17565  fullresc  17566  funcres2c  17617  psmetres2  23467  xmetres2  23514  prdsdsf  23520  xpsdsval  23534  xmssym  23618  xmstri2  23619  mstri2  23620  xmstri  23621  mstri  23622  xmstri3  23623  mstri3  23624  msrtri  23625  tmsxpsval  23694  ngptgp  23792  nlmvscn  23851  nrginvrcn  23856  nghmcn  23909  cnmpt1ds  24005  cnmpt2ds  24006  ipcn  24410  caussi  24461  causs  24462  minveclem2  24590  minveclem3b  24592  minveclem3  24593  minveclem4  24596  minveclem6  24598  ftc1lem6  25205  ulmdvlem1  25559  abelth  25600  cxpcn3  25901  rlimcnp  26115  hhssnv  29626  madjusmdetlem3  31779  qqhcn  31941  qqhucn  31942  ftc1cnnc  35849  ismtyres  35966  isdrngo2  36116  rngchom  45525  ringchom  45571  irinitoringc  45627  rhmsubclem4  45647
  Copyright terms: Public domain W3C validator