Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version |
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
3 | ovres 7416 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 × cxp 5578 ↾ cres 5582 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-res 5592 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: sscres 17452 fullsubc 17481 fullresc 17482 funcres2c 17533 psmetres2 23375 xmetres2 23422 prdsdsf 23428 xpsdsval 23442 xmssym 23526 xmstri2 23527 mstri2 23528 xmstri 23529 mstri 23530 xmstri3 23531 mstri3 23532 msrtri 23533 tmsxpsval 23600 ngptgp 23698 nlmvscn 23757 nrginvrcn 23762 nghmcn 23815 cnmpt1ds 23911 cnmpt2ds 23912 ipcn 24315 caussi 24366 causs 24367 minveclem2 24495 minveclem3b 24497 minveclem3 24498 minveclem4 24501 minveclem6 24503 ftc1lem6 25110 ulmdvlem1 25464 abelth 25505 cxpcn3 25806 rlimcnp 26020 hhssnv 29527 madjusmdetlem3 31681 qqhcn 31841 qqhucn 31842 ftc1cnnc 35776 ismtyres 35893 isdrngo2 36043 rngchom 45413 ringchom 45459 irinitoringc 45515 rhmsubclem4 45535 |
Copyright terms: Public domain | W3C validator |