![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version |
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
3 | ovres 7161 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ∈ wcel 2079 × cxp 5433 ↾ cres 5437 (class class class)co 7007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-xp 5441 df-res 5447 df-iota 6181 df-fv 6225 df-ov 7010 |
This theorem is referenced by: sscres 16910 fullsubc 16937 fullresc 16938 funcres2c 16988 psmetres2 22595 xmetres2 22642 prdsdsf 22648 xpsdsval 22662 xmssym 22746 xmstri2 22747 mstri2 22748 xmstri 22749 mstri 22750 xmstri3 22751 mstri3 22752 msrtri 22753 tmsxpsval 22819 ngptgp 22916 nlmvscn 22967 nrginvrcn 22972 nghmcn 23025 cnmpt1ds 23121 cnmpt2ds 23122 ipcn 23520 caussi 23571 causs 23572 minveclem2 23700 minveclem3b 23702 minveclem3 23703 minveclem4 23706 minveclem6 23708 ftc1lem6 24309 ulmdvlem1 24659 abelth 24700 cxpcn3 24998 rlimcnp 25213 hhssnv 28720 madjusmdetlem3 30665 qqhcn 30805 qqhucn 30806 ftc1cnnc 34443 ismtyres 34564 isdrngo2 34714 rngchom 43670 ringchom 43716 irinitoringc 43772 rhmsubclem4 43792 |
Copyright terms: Public domain | W3C validator |