![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version |
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
3 | ovres 7616 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 × cxp 5698 ↾ cres 5702 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: sscres 17884 fullsubc 17914 fullresc 17915 funcres2c 17968 rngchom 20645 ringchom 20674 rhmsubclem4 20710 irinitoringc 21513 psmetres2 24345 xmetres2 24392 prdsdsf 24398 xpsdsval 24412 xmssym 24496 xmstri2 24497 mstri2 24498 xmstri 24499 mstri 24500 xmstri3 24501 mstri3 24502 msrtri 24503 tmsxpsval 24572 ngptgp 24670 nlmvscn 24729 nrginvrcn 24734 nghmcn 24787 cnmpt1ds 24883 cnmpt2ds 24884 ipcn 25299 caussi 25350 causs 25351 minveclem2 25479 minveclem3b 25481 minveclem3 25482 minveclem4 25485 minveclem6 25487 ftc1lem6 26102 ulmdvlem1 26461 abelth 26503 cxpcn3 26809 rlimcnp 27026 hhssnv 31296 madjusmdetlem3 33775 qqhcn 33937 qqhucn 33938 ftc1cnnc 37652 ismtyres 37768 isdrngo2 37918 naddcnffo 43326 |
Copyright terms: Public domain | W3C validator |