Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version |
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
3 | ovres 7438 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 × cxp 5587 ↾ cres 5591 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: sscres 17535 fullsubc 17565 fullresc 17566 funcres2c 17617 psmetres2 23467 xmetres2 23514 prdsdsf 23520 xpsdsval 23534 xmssym 23618 xmstri2 23619 mstri2 23620 xmstri 23621 mstri 23622 xmstri3 23623 mstri3 23624 msrtri 23625 tmsxpsval 23694 ngptgp 23792 nlmvscn 23851 nrginvrcn 23856 nghmcn 23909 cnmpt1ds 24005 cnmpt2ds 24006 ipcn 24410 caussi 24461 causs 24462 minveclem2 24590 minveclem3b 24592 minveclem3 24593 minveclem4 24596 minveclem6 24598 ftc1lem6 25205 ulmdvlem1 25559 abelth 25600 cxpcn3 25901 rlimcnp 26115 hhssnv 29626 madjusmdetlem3 31779 qqhcn 31941 qqhucn 31942 ftc1cnnc 35849 ismtyres 35966 isdrngo2 36116 rngchom 45525 ringchom 45571 irinitoringc 45627 rhmsubclem4 45647 |
Copyright terms: Public domain | W3C validator |