Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version |
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
3 | ovres 7504 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
4 | 1, 2, 3 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 × cxp 5622 ↾ cres 5626 (class class class)co 7341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-xp 5630 df-res 5636 df-iota 6435 df-fv 6491 df-ov 7344 |
This theorem is referenced by: sscres 17632 fullsubc 17662 fullresc 17663 funcres2c 17714 psmetres2 23572 xmetres2 23619 prdsdsf 23625 xpsdsval 23639 xmssym 23723 xmstri2 23724 mstri2 23725 xmstri 23726 mstri 23727 xmstri3 23728 mstri3 23729 msrtri 23730 tmsxpsval 23799 ngptgp 23897 nlmvscn 23956 nrginvrcn 23961 nghmcn 24014 cnmpt1ds 24110 cnmpt2ds 24111 ipcn 24515 caussi 24566 causs 24567 minveclem2 24695 minveclem3b 24697 minveclem3 24698 minveclem4 24701 minveclem6 24703 ftc1lem6 25310 ulmdvlem1 25664 abelth 25705 cxpcn3 26006 rlimcnp 26220 hhssnv 29913 madjusmdetlem3 32075 qqhcn 32237 qqhucn 32238 ftc1cnnc 36005 ismtyres 36122 isdrngo2 36272 naddcnffo 41382 rngchom 45943 ringchom 45989 irinitoringc 46045 rhmsubclem4 46065 |
Copyright terms: Public domain | W3C validator |