| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version | ||
| Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 3 | ovres 7512 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 × cxp 5612 ↾ cres 5616 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: sscres 17730 fullsubc 17757 fullresc 17758 funcres2c 17810 rngchom 20538 ringchom 20567 rhmsubclem4 20603 irinitoringc 21416 psmetres2 24229 xmetres2 24276 prdsdsf 24282 xpsdsval 24296 xmssym 24380 xmstri2 24381 mstri2 24382 xmstri 24383 mstri 24384 xmstri3 24385 mstri3 24386 msrtri 24387 tmsxpsval 24453 ngptgp 24551 nlmvscn 24602 nrginvrcn 24607 nghmcn 24660 cnmpt1ds 24758 cnmpt2ds 24759 ipcn 25173 caussi 25224 causs 25225 minveclem2 25353 minveclem3b 25355 minveclem3 25356 minveclem4 25359 minveclem6 25361 ftc1lem6 25975 ulmdvlem1 26336 abelth 26378 cxpcn3 26685 rlimcnp 26902 zsoring 28332 hhssnv 31244 madjusmdetlem3 33842 qqhcn 34004 qqhucn 34005 ftc1cnnc 37740 ismtyres 37856 isdrngo2 38006 naddcnffo 43405 |
| Copyright terms: Public domain | W3C validator |