| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version | ||
| Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 3 | ovres 7515 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5617 ↾ cres 5621 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-res 5631 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: sscres 17730 fullsubc 17757 fullresc 17758 funcres2c 17810 rngchom 20508 ringchom 20537 rhmsubclem4 20573 irinitoringc 21386 psmetres2 24200 xmetres2 24247 prdsdsf 24253 xpsdsval 24267 xmssym 24351 xmstri2 24352 mstri2 24353 xmstri 24354 mstri 24355 xmstri3 24356 mstri3 24357 msrtri 24358 tmsxpsval 24424 ngptgp 24522 nlmvscn 24573 nrginvrcn 24578 nghmcn 24631 cnmpt1ds 24729 cnmpt2ds 24730 ipcn 25144 caussi 25195 causs 25196 minveclem2 25324 minveclem3b 25326 minveclem3 25327 minveclem4 25330 minveclem6 25332 ftc1lem6 25946 ulmdvlem1 26307 abelth 26349 cxpcn3 26656 rlimcnp 26873 zsoring 28301 hhssnv 31208 madjusmdetlem3 33796 qqhcn 33958 qqhucn 33959 ftc1cnnc 37672 ismtyres 37788 isdrngo2 37938 naddcnffo 43337 |
| Copyright terms: Public domain | W3C validator |