| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version | ||
| Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 3 | ovres 7558 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5639 ↾ cres 5643 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: sscres 17792 fullsubc 17819 fullresc 17820 funcres2c 17872 rngchom 20539 ringchom 20568 rhmsubclem4 20604 irinitoringc 21396 psmetres2 24209 xmetres2 24256 prdsdsf 24262 xpsdsval 24276 xmssym 24360 xmstri2 24361 mstri2 24362 xmstri 24363 mstri 24364 xmstri3 24365 mstri3 24366 msrtri 24367 tmsxpsval 24433 ngptgp 24531 nlmvscn 24582 nrginvrcn 24587 nghmcn 24640 cnmpt1ds 24738 cnmpt2ds 24739 ipcn 25153 caussi 25204 causs 25205 minveclem2 25333 minveclem3b 25335 minveclem3 25336 minveclem4 25339 minveclem6 25341 ftc1lem6 25955 ulmdvlem1 26316 abelth 26358 cxpcn3 26665 rlimcnp 26882 hhssnv 31200 madjusmdetlem3 33826 qqhcn 33988 qqhucn 33989 ftc1cnnc 37693 ismtyres 37809 isdrngo2 37959 naddcnffo 43360 |
| Copyright terms: Public domain | W3C validator |