MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovresd Structured version   Visualization version   GIF version

Theorem ovresd 7513
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ovresd.1 (𝜑𝐴𝑋)
ovresd.2 (𝜑𝐵𝑋)
Assertion
Ref Expression
ovresd (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))

Proof of Theorem ovresd
StepHypRef Expression
1 ovresd.1 . 2 (𝜑𝐴𝑋)
2 ovresd.2 . 2 (𝜑𝐵𝑋)
3 ovres 7512 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   × cxp 5612  cres 5616  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  sscres  17730  fullsubc  17757  fullresc  17758  funcres2c  17810  rngchom  20538  ringchom  20567  rhmsubclem4  20603  irinitoringc  21416  psmetres2  24229  xmetres2  24276  prdsdsf  24282  xpsdsval  24296  xmssym  24380  xmstri2  24381  mstri2  24382  xmstri  24383  mstri  24384  xmstri3  24385  mstri3  24386  msrtri  24387  tmsxpsval  24453  ngptgp  24551  nlmvscn  24602  nrginvrcn  24607  nghmcn  24660  cnmpt1ds  24758  cnmpt2ds  24759  ipcn  25173  caussi  25224  causs  25225  minveclem2  25353  minveclem3b  25355  minveclem3  25356  minveclem4  25359  minveclem6  25361  ftc1lem6  25975  ulmdvlem1  26336  abelth  26378  cxpcn3  26685  rlimcnp  26902  zsoring  28332  hhssnv  31244  madjusmdetlem3  33842  qqhcn  34004  qqhucn  34005  ftc1cnnc  37740  ismtyres  37856  isdrngo2  38006  naddcnffo  43405
  Copyright terms: Public domain W3C validator