| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version | ||
| Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 3 | ovres 7571 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 × cxp 5652 ↾ cres 5656 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-res 5666 df-iota 6483 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: sscres 17834 fullsubc 17861 fullresc 17862 funcres2c 17914 rngchom 20581 ringchom 20610 rhmsubclem4 20646 irinitoringc 21438 psmetres2 24251 xmetres2 24298 prdsdsf 24304 xpsdsval 24318 xmssym 24402 xmstri2 24403 mstri2 24404 xmstri 24405 mstri 24406 xmstri3 24407 mstri3 24408 msrtri 24409 tmsxpsval 24475 ngptgp 24573 nlmvscn 24624 nrginvrcn 24629 nghmcn 24682 cnmpt1ds 24780 cnmpt2ds 24781 ipcn 25196 caussi 25247 causs 25248 minveclem2 25376 minveclem3b 25378 minveclem3 25379 minveclem4 25382 minveclem6 25384 ftc1lem6 25998 ulmdvlem1 26359 abelth 26401 cxpcn3 26708 rlimcnp 26925 hhssnv 31191 madjusmdetlem3 33806 qqhcn 33968 qqhucn 33969 ftc1cnnc 37662 ismtyres 37778 isdrngo2 37928 naddcnffo 43335 |
| Copyright terms: Public domain | W3C validator |