| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version | ||
| Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 3 | ovres 7535 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5629 ↾ cres 5633 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-res 5643 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: sscres 17761 fullsubc 17788 fullresc 17789 funcres2c 17841 rngchom 20508 ringchom 20537 rhmsubclem4 20573 irinitoringc 21365 psmetres2 24178 xmetres2 24225 prdsdsf 24231 xpsdsval 24245 xmssym 24329 xmstri2 24330 mstri2 24331 xmstri 24332 mstri 24333 xmstri3 24334 mstri3 24335 msrtri 24336 tmsxpsval 24402 ngptgp 24500 nlmvscn 24551 nrginvrcn 24556 nghmcn 24609 cnmpt1ds 24707 cnmpt2ds 24708 ipcn 25122 caussi 25173 causs 25174 minveclem2 25302 minveclem3b 25304 minveclem3 25305 minveclem4 25308 minveclem6 25310 ftc1lem6 25924 ulmdvlem1 26285 abelth 26327 cxpcn3 26634 rlimcnp 26851 hhssnv 31166 madjusmdetlem3 33792 qqhcn 33954 qqhucn 33955 ftc1cnnc 37659 ismtyres 37775 isdrngo2 37925 naddcnffo 43326 |
| Copyright terms: Public domain | W3C validator |