| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version | ||
| Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 3 | ovres 7555 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5636 ↾ cres 5640 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: sscres 17785 fullsubc 17812 fullresc 17813 funcres2c 17865 rngchom 20532 ringchom 20561 rhmsubclem4 20597 irinitoringc 21389 psmetres2 24202 xmetres2 24249 prdsdsf 24255 xpsdsval 24269 xmssym 24353 xmstri2 24354 mstri2 24355 xmstri 24356 mstri 24357 xmstri3 24358 mstri3 24359 msrtri 24360 tmsxpsval 24426 ngptgp 24524 nlmvscn 24575 nrginvrcn 24580 nghmcn 24633 cnmpt1ds 24731 cnmpt2ds 24732 ipcn 25146 caussi 25197 causs 25198 minveclem2 25326 minveclem3b 25328 minveclem3 25329 minveclem4 25332 minveclem6 25334 ftc1lem6 25948 ulmdvlem1 26309 abelth 26351 cxpcn3 26658 rlimcnp 26875 hhssnv 31193 madjusmdetlem3 33819 qqhcn 33981 qqhucn 33982 ftc1cnnc 37686 ismtyres 37802 isdrngo2 37952 naddcnffo 43353 |
| Copyright terms: Public domain | W3C validator |