MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnov Structured version   Visualization version   GIF version

Theorem eqfnov 7484
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
eqfnov ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem eqfnov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv2 6974 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧))))
2 fveq2 6831 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 fveq2 6831 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
42, 3eqeq12d 2749 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = (𝐺‘⟨𝑥, 𝑦⟩)))
5 df-ov 7358 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
6 df-ov 7358 . . . . . 6 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
75, 6eqeq12i 2751 . . . . 5 ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = (𝐺‘⟨𝑥, 𝑦⟩))
84, 7bitr4di 289 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
98ralxp 5787 . . 3 (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
109anbi2i 623 . 2 (((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧)) ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
111, 10bitrdi 287 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wral 3048  cop 4583   × cxp 5619   Fn wfn 6484  cfv 6489  (class class class)co 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497  df-ov 7358
This theorem is referenced by:  eqfnov2  7485  oprres  7523  ssceq  17741  sspg  30729  ssps  30731  sspmlem  30733
  Copyright terms: Public domain W3C validator