![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnov | Structured version Visualization version GIF version |
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.) |
Ref | Expression |
---|---|
eqfnov | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv2 7033 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧)))) | |
2 | fveq2 6891 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | fveq2 6891 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺‘𝑧) = (𝐺‘⟨𝑥, 𝑦⟩)) | |
4 | 2, 3 | eqeq12d 2747 | . . . . 5 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = (𝐺‘⟨𝑥, 𝑦⟩))) |
5 | df-ov 7415 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
6 | df-ov 7415 | . . . . . 6 ⊢ (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩) | |
7 | 5, 6 | eqeq12i 2749 | . . . . 5 ⊢ ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = (𝐺‘⟨𝑥, 𝑦⟩)) |
8 | 4, 7 | bitr4di 289 | . . . 4 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) |
9 | 8 | ralxp 5841 | . . 3 ⊢ (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
10 | 9 | anbi2i 622 | . 2 ⊢ (((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧)) ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) |
11 | 1, 10 | bitrdi 287 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∀wral 3060 ⟨cop 4634 × cxp 5674 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7415 |
This theorem is referenced by: eqfnov2 7542 oprres 7579 ssceq 17780 sspg 30414 ssps 30416 sspmlem 30418 |
Copyright terms: Public domain | W3C validator |