| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqfnov | Structured version Visualization version GIF version | ||
| Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.) |
| Ref | Expression |
|---|---|
| eqfnov | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfv2 7004 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧)))) | |
| 2 | fveq2 6858 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | fveq2 6858 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘𝑧) = (𝐺‘〈𝑥, 𝑦〉)) | |
| 4 | 2, 3 | eqeq12d 2745 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘〈𝑥, 𝑦〉) = (𝐺‘〈𝑥, 𝑦〉))) |
| 5 | df-ov 7390 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 6 | df-ov 7390 | . . . . . 6 ⊢ (𝑥𝐺𝑦) = (𝐺‘〈𝑥, 𝑦〉) | |
| 7 | 5, 6 | eqeq12i 2747 | . . . . 5 ⊢ ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝐹‘〈𝑥, 𝑦〉) = (𝐺‘〈𝑥, 𝑦〉)) |
| 8 | 4, 7 | bitr4di 289 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) |
| 9 | 8 | ralxp 5805 | . . 3 ⊢ (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ (((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧)) ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) |
| 11 | 1, 10 | bitrdi 287 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3044 〈cop 4595 × cxp 5636 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: eqfnov2 7519 oprres 7557 ssceq 17788 sspg 30657 ssps 30659 sspmlem 30661 |
| Copyright terms: Public domain | W3C validator |