![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnov | Structured version Visualization version GIF version |
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.) |
Ref | Expression |
---|---|
eqfnov | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv2 7052 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧)))) | |
2 | fveq2 6907 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
3 | fveq2 6907 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐺‘𝑧) = (𝐺‘〈𝑥, 𝑦〉)) | |
4 | 2, 3 | eqeq12d 2751 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘〈𝑥, 𝑦〉) = (𝐺‘〈𝑥, 𝑦〉))) |
5 | df-ov 7434 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
6 | df-ov 7434 | . . . . . 6 ⊢ (𝑥𝐺𝑦) = (𝐺‘〈𝑥, 𝑦〉) | |
7 | 5, 6 | eqeq12i 2753 | . . . . 5 ⊢ ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝐹‘〈𝑥, 𝑦〉) = (𝐺‘〈𝑥, 𝑦〉)) |
8 | 4, 7 | bitr4di 289 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) |
9 | 8 | ralxp 5855 | . . 3 ⊢ (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
10 | 9 | anbi2i 623 | . 2 ⊢ (((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) = (𝐺‘𝑧)) ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))) |
11 | 1, 10 | bitrdi 287 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3059 〈cop 4637 × cxp 5687 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 df-ov 7434 |
This theorem is referenced by: eqfnov2 7563 oprres 7601 ssceq 17874 sspg 30757 ssps 30759 sspmlem 30761 |
Copyright terms: Public domain | W3C validator |