![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnarcl | Structured version Visualization version GIF version |
Description: Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
nnarcl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaword1 8548 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) | |
2 | eloni 6365 | . . . . . . 7 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordom 7859 | . . . . . . 7 ⊢ Ord ω | |
4 | ordtr2 6399 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord ω) → ((𝐴 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐴 ∈ ω)) | |
5 | 2, 3, 4 | sylancl 585 | . . . . . 6 ⊢ (𝐴 ∈ On → ((𝐴 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐴 ∈ ω)) |
6 | 5 | expd 415 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω))) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω))) |
8 | 1, 7 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω)) |
9 | oaword2 8549 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵)) | |
10 | 9 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵)) |
11 | eloni 6365 | . . . . . . 7 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
12 | ordtr2 6399 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord ω) → ((𝐵 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐵 ∈ ω)) | |
13 | 11, 3, 12 | sylancl 585 | . . . . . 6 ⊢ (𝐵 ∈ On → ((𝐵 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐵 ∈ ω)) |
14 | 13 | expd 415 | . . . . 5 ⊢ (𝐵 ∈ On → (𝐵 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω))) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω))) |
16 | 10, 15 | mpd 15 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω)) |
17 | 8, 16 | jcad 512 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))) |
18 | nnacl 8607 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | |
19 | 17, 18 | impbid1 224 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ⊆ wss 3941 Ord word 6354 Oncon0 6355 (class class class)co 7402 ωcom 7849 +o coa 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-oadd 8466 |
This theorem is referenced by: finxpreclem4 36766 |
Copyright terms: Public domain | W3C validator |