MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnarcl Structured version   Visualization version   GIF version

Theorem nnarcl 8273
Description: Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
nnarcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))

Proof of Theorem nnarcl
StepHypRef Expression
1 oaword1 8209 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
2 eloni 6182 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
3 ordom 7608 . . . . . . 7 Ord ω
4 ordtr2 6216 . . . . . . 7 ((Ord 𝐴 ∧ Ord ω) → ((𝐴 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐴 ∈ ω))
52, 3, 4sylancl 589 . . . . . 6 (𝐴 ∈ On → ((𝐴 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐴 ∈ ω))
65expd 419 . . . . 5 (𝐴 ∈ On → (𝐴 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω)))
76adantr 484 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω)))
81, 7mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω))
9 oaword2 8210 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵))
109ancoms 462 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵))
11 eloni 6182 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
12 ordtr2 6216 . . . . . . 7 ((Ord 𝐵 ∧ Ord ω) → ((𝐵 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐵 ∈ ω))
1311, 3, 12sylancl 589 . . . . . 6 (𝐵 ∈ On → ((𝐵 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐵 ∈ ω))
1413expd 419 . . . . 5 (𝐵 ∈ On → (𝐵 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω)))
1514adantl 485 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω)))
1610, 15mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω))
178, 16jcad 516 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
18 nnacl 8268 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
1917, 18impbid1 228 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2114  wss 3843  Ord word 6171  Oncon0 6172  (class class class)co 7170  ωcom 7599   +o coa 8128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-oadd 8135
This theorem is referenced by:  finxpreclem4  35188
  Copyright terms: Public domain W3C validator