MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnarcl Structured version   Visualization version   GIF version

Theorem nnarcl 8611
Description: Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
nnarcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))

Proof of Theorem nnarcl
StepHypRef Expression
1 oaword1 8547 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
2 eloni 6364 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
3 ordom 7858 . . . . . . 7 Ord ω
4 ordtr2 6398 . . . . . . 7 ((Ord 𝐴 ∧ Ord ω) → ((𝐴 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐴 ∈ ω))
52, 3, 4sylancl 585 . . . . . 6 (𝐴 ∈ On → ((𝐴 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐴 ∈ ω))
65expd 415 . . . . 5 (𝐴 ∈ On → (𝐴 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω)))
76adantr 480 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω)))
81, 7mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → 𝐴 ∈ ω))
9 oaword2 8548 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵))
109ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 +o 𝐵))
11 eloni 6364 . . . . . . 7 (𝐵 ∈ On → Ord 𝐵)
12 ordtr2 6398 . . . . . . 7 ((Ord 𝐵 ∧ Ord ω) → ((𝐵 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐵 ∈ ω))
1311, 3, 12sylancl 585 . . . . . 6 (𝐵 ∈ On → ((𝐵 ⊆ (𝐴 +o 𝐵) ∧ (𝐴 +o 𝐵) ∈ ω) → 𝐵 ∈ ω))
1413expd 415 . . . . 5 (𝐵 ∈ On → (𝐵 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω)))
1514adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ (𝐴 +o 𝐵) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω)))
1610, 15mpd 15 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → 𝐵 ∈ ω))
178, 16jcad 512 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
18 nnacl 8606 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
1917, 18impbid1 224 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098  wss 3940  Ord word 6353  Oncon0 6354  (class class class)co 7401  ωcom 7848   +o coa 8458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-oadd 8465
This theorem is referenced by:  finxpreclem4  36765
  Copyright terms: Public domain W3C validator