Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfun Structured version   Visualization version   GIF version

Theorem hfun 36139
Description: The union of two HF sets is an HF set. (Contributed by Scott Fenton, 15-Jul-2015.)
Assertion
Ref Expression
hfun ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴𝐵) ∈ Hf )

Proof of Theorem hfun
StepHypRef Expression
1 rankung 36127 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
2 elhf2g 36137 . . . . 5 (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
32ibi 267 . . . 4 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
4 elhf2g 36137 . . . . 5 (𝐵 ∈ Hf → (𝐵 ∈ Hf ↔ (rank‘𝐵) ∈ ω))
54ibi 267 . . . 4 (𝐵 ∈ Hf → (rank‘𝐵) ∈ ω)
6 eleq1a 2823 . . . . . 6 ((rank‘𝐵) ∈ ω → (((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω))
76adantl 481 . . . . 5 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → (((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω))
8 uncom 4117 . . . . . . . . . 10 ((rank‘𝐵) ∪ (rank‘𝐴)) = ((rank‘𝐴) ∪ (rank‘𝐵))
98eqeq1i 2734 . . . . . . . . 9 (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) ↔ ((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐴))
109biimpi 216 . . . . . . . 8 (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) → ((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐴))
1110eleq1d 2813 . . . . . . 7 (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) → (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω ↔ (rank‘𝐴) ∈ ω))
1211biimprcd 250 . . . . . 6 ((rank‘𝐴) ∈ ω → (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω))
1312adantr 480 . . . . 5 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω))
14 nnord 7830 . . . . . . 7 ((rank‘𝐴) ∈ ω → Ord (rank‘𝐴))
15 nnord 7830 . . . . . . 7 ((rank‘𝐵) ∈ ω → Ord (rank‘𝐵))
16 ordtri2or2 6421 . . . . . . 7 ((Ord (rank‘𝐴) ∧ Ord (rank‘𝐵)) → ((rank‘𝐴) ⊆ (rank‘𝐵) ∨ (rank‘𝐵) ⊆ (rank‘𝐴)))
1714, 15, 16syl2an 596 . . . . . 6 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → ((rank‘𝐴) ⊆ (rank‘𝐵) ∨ (rank‘𝐵) ⊆ (rank‘𝐴)))
18 ssequn1 4145 . . . . . . 7 ((rank‘𝐴) ⊆ (rank‘𝐵) ↔ ((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵))
19 ssequn1 4145 . . . . . . 7 ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴))
2018, 19orbi12i 914 . . . . . 6 (((rank‘𝐴) ⊆ (rank‘𝐵) ∨ (rank‘𝐵) ⊆ (rank‘𝐴)) ↔ (((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵) ∨ ((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴)))
2117, 20sylib 218 . . . . 5 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → (((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵) ∨ ((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴)))
227, 13, 21mpjaod 860 . . . 4 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω)
233, 5, 22syl2an 596 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω)
241, 23eqeltrd 2828 . 2 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (rank‘(𝐴𝐵)) ∈ ω)
25 unexg 7699 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴𝐵) ∈ V)
26 elhf2g 36137 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ Hf ↔ (rank‘(𝐴𝐵)) ∈ ω))
2725, 26syl 17 . 2 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ((𝐴𝐵) ∈ Hf ↔ (rank‘(𝐴𝐵)) ∈ ω))
2824, 27mpbird 257 1 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴𝐵) ∈ Hf )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  wss 3911  Ord word 6319  cfv 6499  ωcom 7822  rankcrnk 9692   Hf chf 36133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-r1 9693  df-rank 9694  df-hf 36134
This theorem is referenced by:  hfadj  36141
  Copyright terms: Public domain W3C validator