Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfun Structured version   Visualization version   GIF version

Theorem hfun 33641
Description: The union of two HF sets is an HF set. (Contributed by Scott Fenton, 15-Jul-2015.)
Assertion
Ref Expression
hfun ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴𝐵) ∈ Hf )

Proof of Theorem hfun
StepHypRef Expression
1 rankung 33629 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
2 elhf2g 33639 . . . . 5 (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
32ibi 269 . . . 4 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
4 elhf2g 33639 . . . . 5 (𝐵 ∈ Hf → (𝐵 ∈ Hf ↔ (rank‘𝐵) ∈ ω))
54ibi 269 . . . 4 (𝐵 ∈ Hf → (rank‘𝐵) ∈ ω)
6 eleq1a 2910 . . . . . 6 ((rank‘𝐵) ∈ ω → (((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω))
76adantl 484 . . . . 5 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → (((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω))
8 uncom 4131 . . . . . . . . . 10 ((rank‘𝐵) ∪ (rank‘𝐴)) = ((rank‘𝐴) ∪ (rank‘𝐵))
98eqeq1i 2828 . . . . . . . . 9 (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) ↔ ((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐴))
109biimpi 218 . . . . . . . 8 (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) → ((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐴))
1110eleq1d 2899 . . . . . . 7 (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) → (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω ↔ (rank‘𝐴) ∈ ω))
1211biimprcd 252 . . . . . 6 ((rank‘𝐴) ∈ ω → (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω))
1312adantr 483 . . . . 5 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → (((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω))
14 nnord 7590 . . . . . . 7 ((rank‘𝐴) ∈ ω → Ord (rank‘𝐴))
15 nnord 7590 . . . . . . 7 ((rank‘𝐵) ∈ ω → Ord (rank‘𝐵))
16 ordtri2or2 6289 . . . . . . 7 ((Ord (rank‘𝐴) ∧ Ord (rank‘𝐵)) → ((rank‘𝐴) ⊆ (rank‘𝐵) ∨ (rank‘𝐵) ⊆ (rank‘𝐴)))
1714, 15, 16syl2an 597 . . . . . 6 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → ((rank‘𝐴) ⊆ (rank‘𝐵) ∨ (rank‘𝐵) ⊆ (rank‘𝐴)))
18 ssequn1 4158 . . . . . . 7 ((rank‘𝐴) ⊆ (rank‘𝐵) ↔ ((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵))
19 ssequn1 4158 . . . . . . 7 ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴))
2018, 19orbi12i 911 . . . . . 6 (((rank‘𝐴) ⊆ (rank‘𝐵) ∨ (rank‘𝐵) ⊆ (rank‘𝐴)) ↔ (((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵) ∨ ((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴)))
2117, 20sylib 220 . . . . 5 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → (((rank‘𝐴) ∪ (rank‘𝐵)) = (rank‘𝐵) ∨ ((rank‘𝐵) ∪ (rank‘𝐴)) = (rank‘𝐴)))
227, 13, 21mpjaod 856 . . . 4 (((rank‘𝐴) ∈ ω ∧ (rank‘𝐵) ∈ ω) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω)
233, 5, 22syl2an 597 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ω)
241, 23eqeltrd 2915 . 2 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (rank‘(𝐴𝐵)) ∈ ω)
25 unexg 7474 . . 3 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴𝐵) ∈ V)
26 elhf2g 33639 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ Hf ↔ (rank‘(𝐴𝐵)) ∈ ω))
2725, 26syl 17 . 2 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → ((𝐴𝐵) ∈ Hf ↔ (rank‘(𝐴𝐵)) ∈ ω))
2824, 27mpbird 259 1 ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴𝐵) ∈ Hf )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  Vcvv 3496  cun 3936  wss 3938  Ord word 6192  cfv 6357  ωcom 7582  rankcrnk 9194   Hf chf 33635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-reg 9058  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-r1 9195  df-rank 9196  df-hf 33636
This theorem is referenced by:  hfadj  33643
  Copyright terms: Public domain W3C validator