![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fpwwe2lem9 | Structured version Visualization version GIF version |
Description: Lemma for fpwwe2 10644. Given two well-orders 〈𝑋, 𝑅〉 and 〈𝑌, 𝑆〉 of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
Ref | Expression |
---|---|
fpwwe2.1 | ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
fpwwe2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fpwwe2.3 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
fpwwe2lem9.4 | ⊢ (𝜑 → 𝑋𝑊𝑅) |
fpwwe2lem9.6 | ⊢ (𝜑 → 𝑌𝑊𝑆) |
Ref | Expression |
---|---|
fpwwe2lem9 | ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 ⊢ OrdIso(𝑅, 𝑋) = OrdIso(𝑅, 𝑋) | |
2 | 1 | oicl 9530 | . . 3 ⊢ Ord dom OrdIso(𝑅, 𝑋) |
3 | eqid 2731 | . . . 4 ⊢ OrdIso(𝑆, 𝑌) = OrdIso(𝑆, 𝑌) | |
4 | 3 | oicl 9530 | . . 3 ⊢ Ord dom OrdIso(𝑆, 𝑌) |
5 | ordtri2or2 6463 | . . 3 ⊢ ((Ord dom OrdIso(𝑅, 𝑋) ∧ Ord dom OrdIso(𝑆, 𝑌)) → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋))) | |
6 | 2, 4, 5 | mp2an 689 | . 2 ⊢ (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) |
7 | fpwwe2.1 | . . . . 5 ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} | |
8 | fpwwe2.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝐴 ∈ 𝑉) |
10 | fpwwe2.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) | |
11 | 10 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
12 | fpwwe2lem9.4 | . . . . . 6 ⊢ (𝜑 → 𝑋𝑊𝑅) | |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑋𝑊𝑅) |
14 | fpwwe2lem9.6 | . . . . . 6 ⊢ (𝜑 → 𝑌𝑊𝑆) | |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑌𝑊𝑆) |
16 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) | |
17 | 7, 9, 11, 13, 15, 1, 3, 16 | fpwwe2lem8 10639 | . . . 4 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) |
18 | 17 | ex 412 | . . 3 ⊢ (𝜑 → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))))) |
19 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝐴 ∈ 𝑉) |
20 | 10 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
21 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑌𝑊𝑆) |
22 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑋𝑊𝑅) |
23 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) | |
24 | 7, 19, 20, 21, 22, 3, 1, 23 | fpwwe2lem8 10639 | . . . 4 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))) |
25 | 24 | ex 412 | . . 3 ⊢ (𝜑 → (dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋) → (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
26 | 18, 25 | orim12d 962 | . 2 ⊢ (𝜑 → ((dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))) |
27 | 6, 26 | mpi 20 | 1 ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 [wsbc 3777 ∩ cin 3947 ⊆ wss 3948 {csn 4628 class class class wbr 5148 {copab 5210 We wwe 5630 × cxp 5674 ◡ccnv 5675 dom cdm 5676 “ cima 5679 Ord word 6363 (class class class)co 7412 OrdIsocoi 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-oi 9511 |
This theorem is referenced by: fpwwe2lem10 10641 fpwwe2lem11 10642 fpwwe2 10644 |
Copyright terms: Public domain | W3C validator |