| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpwwe2lem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for fpwwe2 10662. Given two well-orders 〈𝑋, 𝑅〉 and 〈𝑌, 𝑆〉 of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
| Ref | Expression |
|---|---|
| fpwwe2.1 | ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| fpwwe2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fpwwe2.3 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| fpwwe2lem9.4 | ⊢ (𝜑 → 𝑋𝑊𝑅) |
| fpwwe2lem9.6 | ⊢ (𝜑 → 𝑌𝑊𝑆) |
| Ref | Expression |
|---|---|
| fpwwe2lem9 | ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ OrdIso(𝑅, 𝑋) = OrdIso(𝑅, 𝑋) | |
| 2 | 1 | oicl 9548 | . . 3 ⊢ Ord dom OrdIso(𝑅, 𝑋) |
| 3 | eqid 2736 | . . . 4 ⊢ OrdIso(𝑆, 𝑌) = OrdIso(𝑆, 𝑌) | |
| 4 | 3 | oicl 9548 | . . 3 ⊢ Ord dom OrdIso(𝑆, 𝑌) |
| 5 | ordtri2or2 6458 | . . 3 ⊢ ((Ord dom OrdIso(𝑅, 𝑋) ∧ Ord dom OrdIso(𝑆, 𝑌)) → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋))) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) |
| 7 | fpwwe2.1 | . . . . 5 ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} | |
| 8 | fpwwe2.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝐴 ∈ 𝑉) |
| 10 | fpwwe2.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) | |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 12 | fpwwe2lem9.4 | . . . . . 6 ⊢ (𝜑 → 𝑋𝑊𝑅) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑋𝑊𝑅) |
| 14 | fpwwe2lem9.6 | . . . . . 6 ⊢ (𝜑 → 𝑌𝑊𝑆) | |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑌𝑊𝑆) |
| 16 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) | |
| 17 | 7, 9, 11, 13, 15, 1, 3, 16 | fpwwe2lem8 10657 | . . . 4 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) |
| 18 | 17 | ex 412 | . . 3 ⊢ (𝜑 → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))))) |
| 19 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝐴 ∈ 𝑉) |
| 20 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 21 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑌𝑊𝑆) |
| 22 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑋𝑊𝑅) |
| 23 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) | |
| 24 | 7, 19, 20, 21, 22, 3, 1, 23 | fpwwe2lem8 10657 | . . . 4 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))) |
| 25 | 24 | ex 412 | . . 3 ⊢ (𝜑 → (dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋) → (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
| 26 | 18, 25 | orim12d 966 | . 2 ⊢ (𝜑 → ((dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))) |
| 27 | 6, 26 | mpi 20 | 1 ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 [wsbc 3770 ∩ cin 3930 ⊆ wss 3931 {csn 4606 class class class wbr 5124 {copab 5186 We wwe 5610 × cxp 5657 ◡ccnv 5658 dom cdm 5659 “ cima 5662 Ord word 6356 (class class class)co 7410 OrdIsocoi 9528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-oi 9529 |
| This theorem is referenced by: fpwwe2lem10 10659 fpwwe2lem11 10660 fpwwe2 10662 |
| Copyright terms: Public domain | W3C validator |