MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem9 Structured version   Visualization version   GIF version

Theorem fpwwe2lem9 10633
Description: Lemma for fpwwe2 10637. Given two well-orders 𝑋, 𝑅 and 𝑌, 𝑆 of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2lem9.4 (𝜑𝑋𝑊𝑅)
fpwwe2lem9.6 (𝜑𝑌𝑊𝑆)
Assertion
Ref Expression
fpwwe2lem9 (𝜑 → ((𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑆,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem9
StepHypRef Expression
1 eqid 2732 . . . 4 OrdIso(𝑅, 𝑋) = OrdIso(𝑅, 𝑋)
21oicl 9523 . . 3 Ord dom OrdIso(𝑅, 𝑋)
3 eqid 2732 . . . 4 OrdIso(𝑆, 𝑌) = OrdIso(𝑆, 𝑌)
43oicl 9523 . . 3 Ord dom OrdIso(𝑆, 𝑌)
5 ordtri2or2 6463 . . 3 ((Ord dom OrdIso(𝑅, 𝑋) ∧ Ord dom OrdIso(𝑆, 𝑌)) → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)))
62, 4, 5mp2an 690 . 2 (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋))
7 fpwwe2.1 . . . . 5 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
8 fpwwe2.2 . . . . . 6 (𝜑𝐴𝑉)
98adantr 481 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝐴𝑉)
10 fpwwe2.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
1110adantlr 713 . . . . 5 (((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
12 fpwwe2lem9.4 . . . . . 6 (𝜑𝑋𝑊𝑅)
1312adantr 481 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑋𝑊𝑅)
14 fpwwe2lem9.6 . . . . . 6 (𝜑𝑌𝑊𝑆)
1514adantr 481 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑌𝑊𝑆)
16 simpr 485 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌))
177, 9, 11, 13, 15, 1, 3, 16fpwwe2lem8 10632 . . . 4 ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → (𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))))
1817ex 413 . . 3 (𝜑 → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) → (𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))))
198adantr 481 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝐴𝑉)
2010adantlr 713 . . . . 5 (((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2114adantr 481 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑌𝑊𝑆)
2212adantr 481 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑋𝑊𝑅)
23 simpr 485 . . . . 5 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋))
247, 19, 20, 21, 22, 3, 1, 23fpwwe2lem8 10632 . . . 4 ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))
2524ex 413 . . 3 (𝜑 → (dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋) → (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))
2618, 25orim12d 963 . 2 (𝜑 → ((dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → ((𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))))
276, 26mpi 20 1 (𝜑 → ((𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3061  [wsbc 3777  cin 3947  wss 3948  {csn 4628   class class class wbr 5148  {copab 5210   We wwe 5630   × cxp 5674  ccnv 5675  dom cdm 5676  cima 5679  Ord word 6363  (class class class)co 7408  OrdIsocoi 9503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-oi 9504
This theorem is referenced by:  fpwwe2lem10  10634  fpwwe2lem11  10635  fpwwe2  10637
  Copyright terms: Public domain W3C validator