![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fpwwe2lem9 | Structured version Visualization version GIF version |
Description: Lemma for fpwwe2 10676. Given two well-orders ⟨𝑋, 𝑅⟩ and ⟨𝑌, 𝑆⟩ of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
Ref | Expression |
---|---|
fpwwe2.1 | ⊢ 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
fpwwe2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fpwwe2.3 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
fpwwe2lem9.4 | ⊢ (𝜑 → 𝑋𝑊𝑅) |
fpwwe2lem9.6 | ⊢ (𝜑 → 𝑌𝑊𝑆) |
Ref | Expression |
---|---|
fpwwe2lem9 | ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ OrdIso(𝑅, 𝑋) = OrdIso(𝑅, 𝑋) | |
2 | 1 | oicl 9562 | . . 3 ⊢ Ord dom OrdIso(𝑅, 𝑋) |
3 | eqid 2728 | . . . 4 ⊢ OrdIso(𝑆, 𝑌) = OrdIso(𝑆, 𝑌) | |
4 | 3 | oicl 9562 | . . 3 ⊢ Ord dom OrdIso(𝑆, 𝑌) |
5 | ordtri2or2 6473 | . . 3 ⊢ ((Ord dom OrdIso(𝑅, 𝑋) ∧ Ord dom OrdIso(𝑆, 𝑌)) → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋))) | |
6 | 2, 4, 5 | mp2an 690 | . 2 ⊢ (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) |
7 | fpwwe2.1 | . . . . 5 ⊢ 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} | |
8 | fpwwe2.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝐴 ∈ 𝑉) |
10 | fpwwe2.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) | |
11 | 10 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
12 | fpwwe2lem9.4 | . . . . . 6 ⊢ (𝜑 → 𝑋𝑊𝑅) | |
13 | 12 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑋𝑊𝑅) |
14 | fpwwe2lem9.6 | . . . . . 6 ⊢ (𝜑 → 𝑌𝑊𝑆) | |
15 | 14 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑌𝑊𝑆) |
16 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) | |
17 | 7, 9, 11, 13, 15, 1, 3, 16 | fpwwe2lem8 10671 | . . . 4 ⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) |
18 | 17 | ex 411 | . . 3 ⊢ (𝜑 → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))))) |
19 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝐴 ∈ 𝑉) |
20 | 10 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
21 | 14 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑌𝑊𝑆) |
22 | 12 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑋𝑊𝑅) |
23 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) | |
24 | 7, 19, 20, 21, 22, 3, 1, 23 | fpwwe2lem8 10671 | . . . 4 ⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))) |
25 | 24 | ex 411 | . . 3 ⊢ (𝜑 → (dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋) → (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
26 | 18, 25 | orim12d 962 | . 2 ⊢ (𝜑 → ((dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))) |
27 | 6, 26 | mpi 20 | 1 ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 [wsbc 3778 ∩ cin 3948 ⊆ wss 3949 {csn 4632 class class class wbr 5152 {copab 5214 We wwe 5636 × cxp 5680 ◡ccnv 5681 dom cdm 5682 “ cima 5685 Ord word 6373 (class class class)co 7426 OrdIsocoi 9542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-oi 9543 |
This theorem is referenced by: fpwwe2lem10 10673 fpwwe2lem11 10674 fpwwe2 10676 |
Copyright terms: Public domain | W3C validator |