Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem1 Structured version   Visualization version   GIF version

Theorem noetalem1 32820
Description: Lemma for noeta 32825. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypotheses
Ref Expression
noetalem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetalem1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetalem1
StepHypRef Expression
1 noetalem.2 . 2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
2 noetalem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32nosupno 32806 . . . 4 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
433adant3 1125 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 No )
5 bdayimaon 32800 . . . 4 (𝐵 ∈ V → suc ( bday 𝐵) ∈ On)
653ad2ant3 1128 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → suc ( bday 𝐵) ∈ On)
7 1oex 7964 . . . . 5 1o ∈ V
87prid1 4607 . . . 4 1o ∈ {1o, 2o}
98noextendseq 32777 . . 3 ((𝑆 No ∧ suc ( bday 𝐵) ∈ On) → (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ∈ No )
104, 6, 9syl2anc 584 . 2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ∈ No )
111, 10syl5eqel 2886 1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2080  {cab 2774  wral 3104  wrex 3105  Vcvv 3436  cdif 3858  cun 3859  wss 3861  ifcif 4383  {csn 4474  cop 4480   cuni 4747   class class class wbr 4964  cmpt 5043   × cxp 5444  dom cdm 5446  cres 5448  cima 5449  Oncon0 6069  suc csuc 6071  cio 6190  cfv 6228  crio 6979  1oc1o 7949  2oc2o 7950   No csur 32750   <s cslt 32751   bday cbday 32752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-ord 6072  df-on 6073  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-1o 7956  df-2o 7957  df-no 32753  df-slt 32754  df-bday 32755
This theorem is referenced by:  noetalem2  32821  noetalem3  32822  noetalem4  32823  noetalem5  32824
  Copyright terms: Public domain W3C validator