Proof of Theorem noetalem1
Step | Hyp | Ref
| Expression |
1 | | noetalem1.2 |
. . . . . . . . . 10
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | 1 | noinfno 33848 |
. . . . . . . . 9
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → 𝑇 ∈ No ) |
3 | 2 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → 𝑇 ∈ No
) |
4 | | nodmord 33783 |
. . . . . . . 8
⊢ (𝑇 ∈
No → Ord dom 𝑇) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → Ord dom 𝑇) |
6 | | noetalem1.1 |
. . . . . . . . . 10
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
7 | 6 | nosupno 33833 |
. . . . . . . . 9
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
8 | 7 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → 𝑆 ∈ No
) |
9 | | nodmord 33783 |
. . . . . . . 8
⊢ (𝑆 ∈
No → Ord dom 𝑆) |
10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → Ord dom 𝑆) |
11 | | ordtri2or2 6347 |
. . . . . . 7
⊢ ((Ord dom
𝑇 ∧ Ord dom 𝑆) → (dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇)) |
12 | 5, 10, 11 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → (dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇)) |
13 | | ssequn2 4113 |
. . . . . . 7
⊢ (dom
𝑇 ⊆ dom 𝑆 ↔ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) |
14 | | ssequn1 4110 |
. . . . . . 7
⊢ (dom
𝑆 ⊆ dom 𝑇 ↔ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) |
15 | 13, 14 | orbi12i 911 |
. . . . . 6
⊢ ((dom
𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇) ↔ ((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 ∨ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇)) |
16 | 12, 15 | sylib 217 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → ((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 ∨ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇)) |
17 | 16 | 3adant3 1130 |
. . . 4
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 ∨ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇)) |
18 | | simplll 771 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ No
) |
19 | | simpllr 772 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → 𝐴 ∈ V) |
20 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → 𝐵 ∈ V) |
21 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
22 | | noetalem1.3 |
. . . . . . . . . . . . 13
⊢ 𝑍 = (𝑆 ∪ ((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
23 | 6, 22 | noetasuplem3 33865 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑎 ∈ 𝐴) → 𝑎 <s 𝑍) |
24 | 18, 19, 20, 21, 23 | syl31anc 1371 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s 𝑍) |
25 | 24 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
26 | 25 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
27 | 6, 22 | noetasuplem4 33866 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏) |
28 | 26, 27 | jca 511 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏)) |
29 | 28 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏)) |
30 | | simp1l 1195 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → 𝐴 ⊆ No
) |
31 | | simp1r 1196 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → 𝐴 ∈ V) |
32 | | simp2r 1198 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → 𝐵 ∈ V) |
33 | 6, 22 | noetasuplem1 33863 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
𝑍 ∈ No ) |
34 | 30, 31, 32, 33 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → 𝑍 ∈ No
) |
35 | 6, 1 | nosupinfsep 33862 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑍 ∈ No )
→ ((∀𝑎 ∈
𝐴 𝑎 <s 𝑍 ∧ ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏))) |
36 | 34, 35 | syld3an3 1407 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏))) |
37 | 36 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏))) |
38 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) |
39 | 38 | reseq2d 5880 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) = (𝑍 ↾ dom 𝑆)) |
40 | | simplll 771 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → 𝐴 ⊆ No
) |
41 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → 𝐴 ∈ V) |
42 | | simplrr 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → 𝐵 ∈ V) |
43 | 6, 22 | noetasuplem2 33864 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
(𝑍 ↾ dom 𝑆) = 𝑆) |
44 | 40, 41, 42, 43 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (𝑍 ↾ dom 𝑆) = 𝑆) |
45 | 39, 44 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) = 𝑆) |
46 | 45 | breq2d 5082 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ 𝑎 <s 𝑆)) |
47 | 46 | ralbidv 3120 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (∀𝑎 ∈ 𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑆)) |
48 | 45 | breq1d 5080 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ 𝑆 <s 𝑏)) |
49 | 48 | ralbidv 3120 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (∀𝑏 ∈ 𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏)) |
50 | 47, 49 | anbi12d 630 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((∀𝑎 ∈ 𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏))) |
51 | 50 | 3adantl3 1166 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((∀𝑎 ∈ 𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏))) |
52 | 37, 51 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 ∧ ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏))) |
53 | 29, 52 | mpbid 231 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏)) |
54 | 53 | ex 412 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏))) |
55 | | noetalem1.4 |
. . . . . . . . . 10
⊢ 𝑊 = (𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
56 | 1, 55 | noetainflem4 33870 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑊) |
57 | | simpllr 772 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ V) |
58 | | simplrl 773 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑏 ∈ 𝐵) → 𝐵 ⊆ No
) |
59 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑏 ∈ 𝐵) → 𝐵 ∈ V) |
60 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
61 | 1, 55 | noetainflem3 33869 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆
No ∧ 𝐵 ∈
V) ∧ 𝑏 ∈ 𝐵) → 𝑊 <s 𝑏) |
62 | 57, 58, 59, 60, 61 | syl31anc 1371 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑏 ∈ 𝐵) → 𝑊 <s 𝑏) |
63 | 62 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → ∀𝑏 ∈ 𝐵 𝑊 <s 𝑏) |
64 | 63 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ∀𝑏 ∈ 𝐵 𝑊 <s 𝑏) |
65 | 56, 64 | jca 511 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀𝑏 ∈ 𝐵 𝑊 <s 𝑏)) |
66 | 65 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀𝑏 ∈ 𝐵 𝑊 <s 𝑏)) |
67 | | simpl1 1189 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
68 | | simpl2l 1224 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → 𝐵 ⊆ No
) |
69 | | simpl2r 1225 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → 𝐵 ∈ V) |
70 | | simpl1r 1223 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → 𝐴 ∈ V) |
71 | 1, 55 | noetainflem1 33867 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆
No ∧ 𝐵 ∈
V) → 𝑊 ∈ No ) |
72 | 70, 68, 69, 71 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → 𝑊 ∈ No
) |
73 | 6, 1 | nosupinfsep 33862 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑊 ∈ No )
→ ((∀𝑎 ∈
𝐴 𝑎 <s 𝑊 ∧ ∀𝑏 ∈ 𝐵 𝑊 <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏))) |
74 | 67, 68, 69, 72, 73 | syl121anc 1373 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀𝑏 ∈ 𝐵 𝑊 <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏))) |
75 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) |
76 | 75 | reseq2d 5880 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) = (𝑊 ↾ dom 𝑇)) |
77 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝐵 ⊆ No
∧ 𝐵 ∈
V)) |
78 | 1, 55 | noetainflem2 33868 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → (𝑊 ↾ dom
𝑇) = 𝑇) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝑊 ↾ dom 𝑇) = 𝑇) |
80 | 76, 79 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) = 𝑇) |
81 | 80 | breq2d 5082 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ 𝑎 <s 𝑇)) |
82 | 81 | ralbidv 3120 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (∀𝑎 ∈ 𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑇)) |
83 | 80 | breq1d 5080 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ 𝑇 <s 𝑏)) |
84 | 83 | ralbidv 3120 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (∀𝑏 ∈ 𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏)) |
85 | 82, 84 | anbi12d 630 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎 ∈ 𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏))) |
86 | 85 | 3adantl3 1166 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎 ∈ 𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏))) |
87 | 74, 86 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀𝑏 ∈ 𝐵 𝑊 <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏))) |
88 | 66, 87 | mpbid 231 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏)) |
89 | 88 | ex 412 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ((dom 𝑆 ∪ dom 𝑇) = dom 𝑇 → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏))) |
90 | 54, 89 | orim12d 961 |
. . . 4
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → (((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 ∨ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) ∨ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏)))) |
91 | 17, 90 | mpd 15 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) ∨ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏))) |
92 | 91 | adantr 480 |
. 2
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) ∨ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏))) |
93 | | simpll 763 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
94 | | simprl 767 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → 𝑂 ∈ On) |
95 | | ssun1 4102 |
. . . . . . . . . . 11
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
96 | | imass2 5999 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) → ( bday
“ 𝐴) ⊆
( bday “ (𝐴 ∪ 𝐵))) |
97 | 95, 96 | ax-mp 5 |
. . . . . . . . . 10
⊢ ( bday “ 𝐴) ⊆ ( bday
“ (𝐴 ∪
𝐵)) |
98 | | simprr 769 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) |
99 | 97, 98 | sstrid 3928 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ( bday “ 𝐴) ⊆ 𝑂) |
100 | 6 | nosupbday 33835 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) → ( bday
‘𝑆) ⊆
𝑂) |
101 | 93, 94, 99, 100 | syl12anc 833 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ( bday ‘𝑆) ⊆ 𝑂) |
102 | 101 | a1d 25 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) → ( bday
‘𝑆) ⊆
𝑂)) |
103 | 102 | ancld 550 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) ∧ ( bday
‘𝑆) ⊆
𝑂))) |
104 | | df-3an 1087 |
. . . . . 6
⊢
((∀𝑎 ∈
𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂) ↔ ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) ∧ ( bday
‘𝑆) ⊆
𝑂)) |
105 | 103, 104 | syl6ibr 251 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂))) |
106 | 93, 7 | syl 17 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → 𝑆 ∈ No
) |
107 | 105, 106 | jctild 525 |
. . . 4
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) → (𝑆 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂)))) |
108 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → (𝐵 ⊆ No
∧ 𝐵 ∈
V)) |
109 | | ssun2 4103 |
. . . . . . . . . . 11
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
110 | | imass2 5999 |
. . . . . . . . . . 11
⊢ (𝐵 ⊆ (𝐴 ∪ 𝐵) → ( bday
“ 𝐵) ⊆
( bday “ (𝐴 ∪ 𝐵))) |
111 | 109, 110 | ax-mp 5 |
. . . . . . . . . 10
⊢ ( bday “ 𝐵) ⊆ ( bday
“ (𝐴 ∪
𝐵)) |
112 | 111, 98 | sstrid 3928 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ( bday “ 𝐵) ⊆ 𝑂) |
113 | 1 | noinfbday 33850 |
. . . . . . . . 9
⊢ (((𝐵 ⊆
No ∧ 𝐵 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐵) ⊆ 𝑂)) → ( bday
‘𝑇) ⊆
𝑂) |
114 | 108, 94, 112, 113 | syl12anc 833 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ( bday ‘𝑇) ⊆ 𝑂) |
115 | 114 | a1d 25 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏) → ( bday
‘𝑇) ⊆
𝑂)) |
116 | 115 | ancld 550 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏) ∧ ( bday
‘𝑇) ⊆
𝑂))) |
117 | | df-3an 1087 |
. . . . . 6
⊢
((∀𝑎 ∈
𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂) ↔ ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏) ∧ ( bday
‘𝑇) ⊆
𝑂)) |
118 | 116, 117 | syl6ibr 251 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂))) |
119 | 108, 2 | syl 17 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → 𝑇 ∈ No
) |
120 | 118, 119 | jctild 525 |
. . . 4
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏) → (𝑇 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂)))) |
121 | 107, 120 | orim12d 961 |
. . 3
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → (((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) ∨ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏)) → ((𝑆 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂)) ∨ (𝑇 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂))))) |
122 | 121 | 3adantl3 1166 |
. 2
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → (((∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏) ∨ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏)) → ((𝑆 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂)) ∨ (𝑇 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂))))) |
123 | 92, 122 | mpd 15 |
1
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((𝑆 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂)) ∨ (𝑇 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂)))) |