Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem1 Structured version   Visualization version   GIF version

Theorem noetalem1 32820
 Description: Lemma for noeta 32825. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypotheses
Ref Expression
noetalem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetalem1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetalem1
StepHypRef Expression
1 noetalem.2 . 2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
2 noetalem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32nosupno 32806 . . . 4 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
433adant3 1125 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 No )
5 bdayimaon 32800 . . . 4 (𝐵 ∈ V → suc ( bday 𝐵) ∈ On)
653ad2ant3 1128 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → suc ( bday 𝐵) ∈ On)
7 1oex 7964 . . . . 5 1o ∈ V
87prid1 4607 . . . 4 1o ∈ {1o, 2o}
98noextendseq 32777 . . 3 ((𝑆 No ∧ suc ( bday 𝐵) ∈ On) → (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ∈ No )
104, 6, 9syl2anc 584 . 2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ∈ No )
111, 10syl5eqel 2886 1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   ∧ w3a 1080   = wceq 1522   ∈ wcel 2080  {cab 2774  ∀wral 3104  ∃wrex 3105  Vcvv 3436   ∖ cdif 3858   ∪ cun 3859   ⊆ wss 3861  ifcif 4383  {csn 4474  ⟨cop 4480  ∪ cuni 4747   class class class wbr 4964   ↦ cmpt 5043   × cxp 5444  dom cdm 5446   ↾ cres 5448   “ cima 5449  Oncon0 6069  suc csuc 6071  ℩cio 6190  ‘cfv 6228  ℩crio 6979  1oc1o 7949  2oc2o 7950   No csur 32750
 Copyright terms: Public domain W3C validator