MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetalem1 Structured version   Visualization version   GIF version

Theorem noetalem1 27089
Description: Lemma for noeta 27091. Either 𝑆 or 𝑇 satisfies the final condition. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetalem1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem1.2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem1.3 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
noetalem1.4 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetalem1 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝑢,𝑎,𝐴,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑔   𝑢,𝐵   𝑣,𝑏,𝐵,𝑥,𝑦   𝑢,𝑔,𝑣,𝑥,𝑦   𝑢,𝑂,𝑦   𝑆,𝑎,𝑏,𝑔,𝑥   𝑇,𝑎,𝑏,𝑔,𝑥   𝑣,𝑢,𝑥,𝑦   𝑊,𝑎,𝑏,𝑔,𝑥   𝑥,𝑦   𝑍,𝑎,𝑏,𝑔,𝑥
Allowed substitution hints:   𝑆(𝑦,𝑣,𝑢)   𝑇(𝑦,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑔,𝑎,𝑏)   𝑊(𝑦,𝑣,𝑢)   𝑍(𝑦,𝑣,𝑢)

Proof of Theorem noetalem1
StepHypRef Expression
1 noetalem1.2 . . . . . . . . . 10 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27066 . . . . . . . . 9 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
32adantl 482 . . . . . . . 8 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝑇 No )
4 nodmord 27001 . . . . . . . 8 (𝑇 No → Ord dom 𝑇)
53, 4syl 17 . . . . . . 7 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → Ord dom 𝑇)
6 noetalem1.1 . . . . . . . . . 10 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
76nosupno 27051 . . . . . . . . 9 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
87adantr 481 . . . . . . . 8 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝑆 No )
9 nodmord 27001 . . . . . . . 8 (𝑆 No → Ord dom 𝑆)
108, 9syl 17 . . . . . . 7 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → Ord dom 𝑆)
11 ordtri2or2 6416 . . . . . . 7 ((Ord dom 𝑇 ∧ Ord dom 𝑆) → (dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇))
125, 10, 11syl2anc 584 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇))
13 ssequn2 4143 . . . . . . 7 (dom 𝑇 ⊆ dom 𝑆 ↔ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆)
14 ssequn1 4140 . . . . . . 7 (dom 𝑆 ⊆ dom 𝑇 ↔ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇)
1513, 14orbi12i 913 . . . . . 6 ((dom 𝑇 ⊆ dom 𝑆 ∨ dom 𝑆 ⊆ dom 𝑇) ↔ ((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 ∨ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇))
1612, 15sylib 217 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 ∨ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇))
17163adant3 1132 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 ∨ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇))
18 simplll 773 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐴 No )
19 simpllr 774 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐴 ∈ V)
20 simplrr 776 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 ∈ V)
21 simpr 485 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝑎𝐴)
22 noetalem1.3 . . . . . . . . . . . . 13 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
236, 22noetasuplem3 27083 . . . . . . . . . . . 12 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑎𝐴) → 𝑎 <s 𝑍)
2418, 19, 20, 21, 23syl31anc 1373 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝑎 <s 𝑍)
2524ralrimiva 3143 . . . . . . . . . 10 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ∀𝑎𝐴 𝑎 <s 𝑍)
26253adant3 1132 . . . . . . . . 9 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑍)
276, 22noetasuplem4 27084 . . . . . . . . 9 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
2826, 27jca 512 . . . . . . . 8 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → (∀𝑎𝐴 𝑎 <s 𝑍 ∧ ∀𝑏𝐵 𝑍 <s 𝑏))
2928adantr 481 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (∀𝑎𝐴 𝑎 <s 𝑍 ∧ ∀𝑏𝐵 𝑍 <s 𝑏))
30 simp1l 1197 . . . . . . . . . . 11 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → 𝐴 No )
31 simp1r 1198 . . . . . . . . . . 11 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → 𝐴 ∈ V)
32 simp2r 1200 . . . . . . . . . . 11 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → 𝐵 ∈ V)
336, 22noetasuplem1 27081 . . . . . . . . . . 11 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
3430, 31, 32, 33syl3anc 1371 . . . . . . . . . 10 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → 𝑍 No )
356, 1nosupinfsep 27080 . . . . . . . . . 10 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑍 No ) → ((∀𝑎𝐴 𝑎 <s 𝑍 ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
3634, 35syld3an3 1409 . . . . . . . . 9 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ((∀𝑎𝐴 𝑎 <s 𝑍 ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
3736adantr 481 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((∀𝑎𝐴 𝑎 <s 𝑍 ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
38 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (dom 𝑆 ∪ dom 𝑇) = dom 𝑆)
3938reseq2d 5937 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) = (𝑍 ↾ dom 𝑆))
40 simplll 773 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → 𝐴 No )
41 simpllr 774 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → 𝐴 ∈ V)
42 simplrr 776 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → 𝐵 ∈ V)
436, 22noetasuplem2 27082 . . . . . . . . . . . . . 14 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑍 ↾ dom 𝑆) = 𝑆)
4440, 41, 42, 43syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (𝑍 ↾ dom 𝑆) = 𝑆)
4539, 44eqtrd 2776 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) = 𝑆)
4645breq2d 5117 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ 𝑎 <s 𝑆))
4746ralbidv 3174 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (∀𝑎𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ∀𝑎𝐴 𝑎 <s 𝑆))
4845breq1d 5115 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏𝑆 <s 𝑏))
4948ralbidv 3174 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (∀𝑏𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ∀𝑏𝐵 𝑆 <s 𝑏))
5047, 49anbi12d 631 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((∀𝑎𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏)))
51503adantl3 1168 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((∀𝑎𝐴 𝑎 <s (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑍 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏)))
5237, 51bitrd 278 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → ((∀𝑎𝐴 𝑎 <s 𝑍 ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏)))
5329, 52mpbid 231 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑆) → (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏))
5453ex 413 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 → (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏)))
55 noetalem1.4 . . . . . . . . . 10 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
561, 55noetainflem4 27088 . . . . . . . . 9 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
57 simpllr 774 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐴 ∈ V)
58 simplrl 775 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐵 No )
59 simplrr 776 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐵 ∈ V)
60 simpr 485 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝑏𝐵)
611, 55noetainflem3 27087 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) ∧ 𝑏𝐵) → 𝑊 <s 𝑏)
6257, 58, 59, 60, 61syl31anc 1373 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝑊 <s 𝑏)
6362ralrimiva 3143 . . . . . . . . . 10 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ∀𝑏𝐵 𝑊 <s 𝑏)
64633adant3 1132 . . . . . . . . 9 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑊 <s 𝑏)
6556, 64jca 512 . . . . . . . 8 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → (∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏))
6665adantr 481 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏))
67 simpl1 1191 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝐴 No 𝐴 ∈ V))
68 simpl2l 1226 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → 𝐵 No )
69 simpl2r 1227 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → 𝐵 ∈ V)
70 simpl1r 1225 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → 𝐴 ∈ V)
711, 55noetainflem1 27085 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
7270, 68, 69, 71syl3anc 1371 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → 𝑊 No )
736, 1nosupinfsep 27080 . . . . . . . . 9 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
7467, 68, 69, 72, 73syl121anc 1375 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
75 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (dom 𝑆 ∪ dom 𝑇) = dom 𝑇)
7675reseq2d 5937 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) = (𝑊 ↾ dom 𝑇))
77 simplr 767 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝐵 No 𝐵 ∈ V))
781, 55noetainflem2 27086 . . . . . . . . . . . . . 14 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
7977, 78syl 17 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝑊 ↾ dom 𝑇) = 𝑇)
8076, 79eqtrd 2776 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) = 𝑇)
8180breq2d 5117 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ 𝑎 <s 𝑇))
8281ralbidv 3174 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ∀𝑎𝐴 𝑎 <s 𝑇))
8380breq1d 5115 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏𝑇 <s 𝑏))
8483ralbidv 3174 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ∀𝑏𝐵 𝑇 <s 𝑏))
8582, 84anbi12d 631 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏)))
86853adantl3 1168 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏)))
8774, 86bitrd 278 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏)))
8866, 87mpbid 231 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏))
8988ex 413 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ((dom 𝑆 ∪ dom 𝑇) = dom 𝑇 → (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏)))
9054, 89orim12d 963 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → (((dom 𝑆 ∪ dom 𝑇) = dom 𝑆 ∨ (dom 𝑆 ∪ dom 𝑇) = dom 𝑇) → ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) ∨ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏))))
9117, 90mpd 15 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) ∨ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏)))
9291adantr 481 . 2 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) ∨ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏)))
93 simpll 765 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → (𝐴 No 𝐴 ∈ V))
94 simprl 769 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → 𝑂 ∈ On)
95 ssun1 4132 . . . . . . . . . . 11 𝐴 ⊆ (𝐴𝐵)
96 imass2 6054 . . . . . . . . . . 11 (𝐴 ⊆ (𝐴𝐵) → ( bday 𝐴) ⊆ ( bday “ (𝐴𝐵)))
9795, 96ax-mp 5 . . . . . . . . . 10 ( bday 𝐴) ⊆ ( bday “ (𝐴𝐵))
98 simprr 771 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ( bday “ (𝐴𝐵)) ⊆ 𝑂)
9997, 98sstrid 3955 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ( bday 𝐴) ⊆ 𝑂)
1006nosupbday 27053 . . . . . . . . 9 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → ( bday 𝑆) ⊆ 𝑂)
10193, 94, 99, 100syl12anc 835 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ( bday 𝑆) ⊆ 𝑂)
102101a1d 25 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) → ( bday 𝑆) ⊆ 𝑂))
103102ancld 551 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) → ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) ∧ ( bday 𝑆) ⊆ 𝑂)))
104 df-3an 1089 . . . . . 6 ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂) ↔ ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) ∧ ( bday 𝑆) ⊆ 𝑂))
105103, 104syl6ibr 251 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) → (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)))
10693, 7syl 17 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → 𝑆 No )
107105, 106jctild 526 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) → (𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂))))
108 simplr 767 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → (𝐵 No 𝐵 ∈ V))
109 ssun2 4133 . . . . . . . . . . 11 𝐵 ⊆ (𝐴𝐵)
110 imass2 6054 . . . . . . . . . . 11 (𝐵 ⊆ (𝐴𝐵) → ( bday 𝐵) ⊆ ( bday “ (𝐴𝐵)))
111109, 110ax-mp 5 . . . . . . . . . 10 ( bday 𝐵) ⊆ ( bday “ (𝐴𝐵))
112111, 98sstrid 3955 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ( bday 𝐵) ⊆ 𝑂)
1131noinfbday 27068 . . . . . . . . 9 (((𝐵 No 𝐵 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐵) ⊆ 𝑂)) → ( bday 𝑇) ⊆ 𝑂)
114108, 94, 112, 113syl12anc 835 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ( bday 𝑇) ⊆ 𝑂)
115114a1d 25 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏) → ( bday 𝑇) ⊆ 𝑂))
116115ancld 551 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏) → ((∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏) ∧ ( bday 𝑇) ⊆ 𝑂)))
117 df-3an 1089 . . . . . 6 ((∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂) ↔ ((∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏) ∧ ( bday 𝑇) ⊆ 𝑂))
118116, 117syl6ibr 251 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏) → (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)))
119108, 2syl 17 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → 𝑇 No )
120118, 119jctild 526 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏) → (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))))
121107, 120orim12d 963 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → (((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) ∨ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏)) → ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)))))
1221213adantl3 1168 . 2 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → (((∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏) ∨ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏)) → ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)))))
12392, 122mpd 15 1 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  cun 3908  wss 3910  ifcif 4486  {csn 4586  cop 4592   cuni 4865   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  cres 5635  cima 5636  Ord word 6316  Oncon0 6317  suc csuc 6319  cio 6446  cfv 6496  crio 7312  1oc1o 8405  2oc2o 8406   No csur 26988   <s cslt 26989   bday cbday 26990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993
This theorem is referenced by:  noetalem2  27090
  Copyright terms: Public domain W3C validator