![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > partimcomember | Structured version Visualization version GIF version |
Description: Partition with general 𝑅 (in addition to the member partition cf. mpet 38363 and mpet2 38364) implies equivalent comembers. (Contributed by Peter Mazsa, 23-Sep-2021.) (Revised by Peter Mazsa, 22-Dec-2024.) |
Ref | Expression |
---|---|
partimcomember | ⊢ (𝑅 Part 𝐴 → CoMembEr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | partim 38332 | . 2 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | |
2 | mainer 38358 | . 2 ⊢ ( ≀ 𝑅 ErALTV 𝐴 → CoMembEr 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 Part 𝐴 → CoMembEr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ≀ ccoss 37701 ErALTV werALTV 37727 CoMembEr wcomember 37729 Part wpart 37740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-id 5571 df-eprel 5577 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ec 8720 df-qs 8724 df-coss 37935 df-coels 37936 df-refrel 38036 df-cnvrefrel 38051 df-symrel 38068 df-trrel 38098 df-eqvrel 38109 df-coeleqvrel 38111 df-dmqs 38163 df-erALTV 38188 df-comember 38190 df-funALTV 38206 df-disjALTV 38229 df-eldisj 38231 df-part 38290 |
This theorem is referenced by: mainpart 38367 |
Copyright terms: Public domain | W3C validator |