Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partimcomember Structured version   Visualization version   GIF version

Theorem partimcomember 38881
Description: Partition with general 𝑅 (in addition to the member partition cf. mpet 38885 and mpet2 38886) implies equivalent comembers. (Contributed by Peter Mazsa, 23-Sep-2021.) (Revised by Peter Mazsa, 22-Dec-2024.)
Assertion
Ref Expression
partimcomember (𝑅 Part 𝐴 → CoMembEr 𝐴)

Proof of Theorem partimcomember
StepHypRef Expression
1 partim 38854 . 2 (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴)
2 mainer 38880 . 2 ( ≀ 𝑅 ErALTV 𝐴 → CoMembEr 𝐴)
31, 2syl 17 1 (𝑅 Part 𝐴 → CoMembEr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccoss 38223   ErALTV werALTV 38249   CoMembEr wcomember 38251   Part wpart 38262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-qs 8628  df-coss 38456  df-coels 38457  df-refrel 38557  df-cnvrefrel 38572  df-symrel 38589  df-trrel 38619  df-eqvrel 38630  df-coeleqvrel 38632  df-dmqs 38684  df-erALTV 38710  df-comember 38712  df-funALTV 38728  df-disjALTV 38751  df-eldisj 38753  df-part 38812
This theorem is referenced by:  mainpart  38889
  Copyright terms: Public domain W3C validator