| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > permaxpr | Structured version Visualization version GIF version | ||
| Description: The Axiom of Pairing ax-pr 5371 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| permmodel.1 | ⊢ 𝐹:V–1-1-onto→V |
| permmodel.2 | ⊢ 𝑅 = (◡𝐹 ∘ E ) |
| Ref | Expression |
|---|---|
| permaxpr | ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . 2 ⊢ (◡𝐹‘{𝑥, 𝑦}) ∈ V | |
| 2 | breq2 5096 | . . . 4 ⊢ (𝑧 = (◡𝐹‘{𝑥, 𝑦}) → (𝑤𝑅𝑧 ↔ 𝑤𝑅(◡𝐹‘{𝑥, 𝑦}))) | |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑧 = (◡𝐹‘{𝑥, 𝑦}) → (((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅𝑧) ↔ ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅(◡𝐹‘{𝑥, 𝑦})))) |
| 4 | 3 | albidv 1920 | . 2 ⊢ (𝑧 = (◡𝐹‘{𝑥, 𝑦}) → (∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅𝑧) ↔ ∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅(◡𝐹‘{𝑥, 𝑦})))) |
| 5 | permmodel.1 | . . . . 5 ⊢ 𝐹:V–1-1-onto→V | |
| 6 | permmodel.2 | . . . . 5 ⊢ 𝑅 = (◡𝐹 ∘ E ) | |
| 7 | vex 3440 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 8 | prex 5376 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ V | |
| 9 | 5, 6, 7, 8 | brpermmodelcnv 44978 | . . . 4 ⊢ (𝑤𝑅(◡𝐹‘{𝑥, 𝑦}) ↔ 𝑤 ∈ {𝑥, 𝑦}) |
| 10 | 7 | elpr 4602 | . . . 4 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
| 11 | 9, 10 | sylbbr 236 | . . 3 ⊢ ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅(◡𝐹‘{𝑥, 𝑦})) |
| 12 | 11 | ax-gen 1795 | . 2 ⊢ ∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅(◡𝐹‘{𝑥, 𝑦})) |
| 13 | 1, 4, 12 | ceqsexv2d 3488 | 1 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤𝑅𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 {cpr 4579 class class class wbr 5092 E cep 5518 ◡ccnv 5618 ∘ ccom 5623 –1-1-onto→wf1o 6481 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |