Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxpr Structured version   Visualization version   GIF version

Theorem permaxpr 45043
Description: The Axiom of Pairing ax-pr 5365 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxpr 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧)
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝑧,𝐹,𝑤
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦)

Proof of Theorem permaxpr
StepHypRef Expression
1 fvex 6830 . 2 (𝐹‘{𝑥, 𝑦}) ∈ V
2 breq2 5090 . . . 4 (𝑧 = (𝐹‘{𝑥, 𝑦}) → (𝑤𝑅𝑧𝑤𝑅(𝐹‘{𝑥, 𝑦})))
32imbi2d 340 . . 3 (𝑧 = (𝐹‘{𝑥, 𝑦}) → (((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧) ↔ ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅(𝐹‘{𝑥, 𝑦}))))
43albidv 1921 . 2 (𝑧 = (𝐹‘{𝑥, 𝑦}) → (∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧) ↔ ∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅(𝐹‘{𝑥, 𝑦}))))
5 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
6 permmodel.2 . . . . 5 𝑅 = (𝐹 ∘ E )
7 vex 3440 . . . . 5 𝑤 ∈ V
8 prex 5370 . . . . 5 {𝑥, 𝑦} ∈ V
95, 6, 7, 8brpermmodelcnv 45037 . . . 4 (𝑤𝑅(𝐹‘{𝑥, 𝑦}) ↔ 𝑤 ∈ {𝑥, 𝑦})
107elpr 4596 . . . 4 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
119, 10sylbbr 236 . . 3 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅(𝐹‘{𝑥, 𝑦}))
1211ax-gen 1796 . 2 𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅(𝐹‘{𝑥, 𝑦}))
131, 4, 12ceqsexv2d 3487 1 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wal 1539   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  {cpr 4573   class class class wbr 5086   E cep 5510  ccnv 5610  ccom 5615  1-1-ontowf1o 6475  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator