Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxpr Structured version   Visualization version   GIF version

Theorem permaxpr 44993
Description: The Axiom of Pairing ax-pr 5389 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxpr 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧)
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝑧,𝐹,𝑤
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦)

Proof of Theorem permaxpr
StepHypRef Expression
1 fvex 6873 . 2 (𝐹‘{𝑥, 𝑦}) ∈ V
2 breq2 5113 . . . 4 (𝑧 = (𝐹‘{𝑥, 𝑦}) → (𝑤𝑅𝑧𝑤𝑅(𝐹‘{𝑥, 𝑦})))
32imbi2d 340 . . 3 (𝑧 = (𝐹‘{𝑥, 𝑦}) → (((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧) ↔ ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅(𝐹‘{𝑥, 𝑦}))))
43albidv 1920 . 2 (𝑧 = (𝐹‘{𝑥, 𝑦}) → (∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧) ↔ ∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅(𝐹‘{𝑥, 𝑦}))))
5 permmodel.1 . . . . 5 𝐹:V–1-1-onto→V
6 permmodel.2 . . . . 5 𝑅 = (𝐹 ∘ E )
7 vex 3454 . . . . 5 𝑤 ∈ V
8 prex 5394 . . . . 5 {𝑥, 𝑦} ∈ V
95, 6, 7, 8brpermmodelcnv 44987 . . . 4 (𝑤𝑅(𝐹‘{𝑥, 𝑦}) ↔ 𝑤 ∈ {𝑥, 𝑦})
107elpr 4616 . . . 4 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
119, 10sylbbr 236 . . 3 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅(𝐹‘{𝑥, 𝑦}))
1211ax-gen 1795 . 2 𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅(𝐹‘{𝑥, 𝑦}))
131, 4, 12ceqsexv2d 3502 1 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑅𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  {cpr 4593   class class class wbr 5109   E cep 5539  ccnv 5639  ccom 5644  1-1-ontowf1o 6512  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator