Proof of Theorem permaxun
| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6885 |
. 2
⊢ (◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥))) ∈ V |
| 2 | | breq2 5120 |
. . . 4
⊢ (𝑦 = (◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥))) → (𝑧𝑅𝑦 ↔ 𝑧𝑅(◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥))))) |
| 3 | 2 | imbi2d 340 |
. . 3
⊢ (𝑦 = (◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥))) → ((∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅𝑦) ↔ (∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥)))))) |
| 4 | 3 | albidv 1919 |
. 2
⊢ (𝑦 = (◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥))) → (∀𝑧(∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅𝑦) ↔ ∀𝑧(∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥)))))) |
| 5 | | permmodel.1 |
. . . . . . 7
⊢ 𝐹:V–1-1-onto→V |
| 6 | | permmodel.2 |
. . . . . . 7
⊢ 𝑅 = (◡𝐹 ∘ E ) |
| 7 | | vex 3461 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 8 | | vex 3461 |
. . . . . . 7
⊢ 𝑤 ∈ V |
| 9 | 5, 6, 7, 8 | brpermmodel 44955 |
. . . . . 6
⊢ (𝑧𝑅𝑤 ↔ 𝑧 ∈ (𝐹‘𝑤)) |
| 10 | | vex 3461 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 11 | 5, 6, 8, 10 | brpermmodel 44955 |
. . . . . 6
⊢ (𝑤𝑅𝑥 ↔ 𝑤 ∈ (𝐹‘𝑥)) |
| 12 | | f1ofn 6815 |
. . . . . . . . 9
⊢ (𝐹:V–1-1-onto→V
→ 𝐹 Fn
V) |
| 13 | 5, 12 | ax-mp 5 |
. . . . . . . 8
⊢ 𝐹 Fn V |
| 14 | | ssv 3981 |
. . . . . . . 8
⊢ (𝐹‘𝑥) ⊆ V |
| 15 | | fnfvima 7221 |
. . . . . . . 8
⊢ ((𝐹 Fn V ∧ (𝐹‘𝑥) ⊆ V ∧ 𝑤 ∈ (𝐹‘𝑥)) → (𝐹‘𝑤) ∈ (𝐹 “ (𝐹‘𝑥))) |
| 16 | 13, 14, 15 | mp3an12 1452 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐹‘𝑥) → (𝐹‘𝑤) ∈ (𝐹 “ (𝐹‘𝑥))) |
| 17 | | elunii 4885 |
. . . . . . 7
⊢ ((𝑧 ∈ (𝐹‘𝑤) ∧ (𝐹‘𝑤) ∈ (𝐹 “ (𝐹‘𝑥))) → 𝑧 ∈ ∪ (𝐹 “ (𝐹‘𝑥))) |
| 18 | 16, 17 | sylan2 593 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐹‘𝑤) ∧ 𝑤 ∈ (𝐹‘𝑥)) → 𝑧 ∈ ∪ (𝐹 “ (𝐹‘𝑥))) |
| 19 | 9, 11, 18 | syl2anb 598 |
. . . . 5
⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧 ∈ ∪ (𝐹 “ (𝐹‘𝑥))) |
| 20 | | f1ofun 6816 |
. . . . . . . . 9
⊢ (𝐹:V–1-1-onto→V
→ Fun 𝐹) |
| 21 | 5, 20 | ax-mp 5 |
. . . . . . . 8
⊢ Fun 𝐹 |
| 22 | | fvex 6885 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ∈ V |
| 23 | 22 | funimaex 6621 |
. . . . . . . 8
⊢ (Fun
𝐹 → (𝐹 “ (𝐹‘𝑥)) ∈ V) |
| 24 | 21, 23 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹 “ (𝐹‘𝑥)) ∈ V |
| 25 | 24 | uniex 7729 |
. . . . . 6
⊢ ∪ (𝐹
“ (𝐹‘𝑥)) ∈ V |
| 26 | 5, 6, 7, 25 | brpermmodelcnv 44956 |
. . . . 5
⊢ (𝑧𝑅(◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥))) ↔ 𝑧 ∈ ∪ (𝐹 “ (𝐹‘𝑥))) |
| 27 | 19, 26 | sylibr 234 |
. . . 4
⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥)))) |
| 28 | 27 | exlimiv 1929 |
. . 3
⊢
(∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥)))) |
| 29 | 28 | ax-gen 1794 |
. 2
⊢
∀𝑧(∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅(◡𝐹‘∪ (𝐹 “ (𝐹‘𝑥)))) |
| 30 | 1, 4, 29 | ceqsexv2d 3510 |
1
⊢
∃𝑦∀𝑧(∃𝑤(𝑧𝑅𝑤 ∧ 𝑤𝑅𝑥) → 𝑧𝑅𝑦) |