Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxun Structured version   Visualization version   GIF version

Theorem permaxun 45044
Description: The Axiom of Union ax-un 7663 holds in permutation models. Part of Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permaxun 𝑦𝑧(∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅𝑦)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑤,𝐹,𝑦,𝑧   𝑤,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝐹(𝑥)

Proof of Theorem permaxun
StepHypRef Expression
1 fvex 6830 . 2 (𝐹 (𝐹 “ (𝐹𝑥))) ∈ V
2 breq2 5090 . . . 4 (𝑦 = (𝐹 (𝐹 “ (𝐹𝑥))) → (𝑧𝑅𝑦𝑧𝑅(𝐹 (𝐹 “ (𝐹𝑥)))))
32imbi2d 340 . . 3 (𝑦 = (𝐹 (𝐹 “ (𝐹𝑥))) → ((∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅𝑦) ↔ (∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅(𝐹 (𝐹 “ (𝐹𝑥))))))
43albidv 1921 . 2 (𝑦 = (𝐹 (𝐹 “ (𝐹𝑥))) → (∀𝑧(∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅𝑦) ↔ ∀𝑧(∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅(𝐹 (𝐹 “ (𝐹𝑥))))))
5 permmodel.1 . . . . . . 7 𝐹:V–1-1-onto→V
6 permmodel.2 . . . . . . 7 𝑅 = (𝐹 ∘ E )
7 vex 3440 . . . . . . 7 𝑧 ∈ V
8 vex 3440 . . . . . . 7 𝑤 ∈ V
95, 6, 7, 8brpermmodel 45036 . . . . . 6 (𝑧𝑅𝑤𝑧 ∈ (𝐹𝑤))
10 vex 3440 . . . . . . 7 𝑥 ∈ V
115, 6, 8, 10brpermmodel 45036 . . . . . 6 (𝑤𝑅𝑥𝑤 ∈ (𝐹𝑥))
12 f1ofn 6759 . . . . . . . . 9 (𝐹:V–1-1-onto→V → 𝐹 Fn V)
135, 12ax-mp 5 . . . . . . . 8 𝐹 Fn V
14 ssv 3954 . . . . . . . 8 (𝐹𝑥) ⊆ V
15 fnfvima 7162 . . . . . . . 8 ((𝐹 Fn V ∧ (𝐹𝑥) ⊆ V ∧ 𝑤 ∈ (𝐹𝑥)) → (𝐹𝑤) ∈ (𝐹 “ (𝐹𝑥)))
1613, 14, 15mp3an12 1453 . . . . . . 7 (𝑤 ∈ (𝐹𝑥) → (𝐹𝑤) ∈ (𝐹 “ (𝐹𝑥)))
17 elunii 4859 . . . . . . 7 ((𝑧 ∈ (𝐹𝑤) ∧ (𝐹𝑤) ∈ (𝐹 “ (𝐹𝑥))) → 𝑧 (𝐹 “ (𝐹𝑥)))
1816, 17sylan2 593 . . . . . 6 ((𝑧 ∈ (𝐹𝑤) ∧ 𝑤 ∈ (𝐹𝑥)) → 𝑧 (𝐹 “ (𝐹𝑥)))
199, 11, 18syl2anb 598 . . . . 5 ((𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧 (𝐹 “ (𝐹𝑥)))
20 f1ofun 6760 . . . . . . . . 9 (𝐹:V–1-1-onto→V → Fun 𝐹)
215, 20ax-mp 5 . . . . . . . 8 Fun 𝐹
22 fvex 6830 . . . . . . . . 9 (𝐹𝑥) ∈ V
2322funimaex 6564 . . . . . . . 8 (Fun 𝐹 → (𝐹 “ (𝐹𝑥)) ∈ V)
2421, 23ax-mp 5 . . . . . . 7 (𝐹 “ (𝐹𝑥)) ∈ V
2524uniex 7669 . . . . . 6 (𝐹 “ (𝐹𝑥)) ∈ V
265, 6, 7, 25brpermmodelcnv 45037 . . . . 5 (𝑧𝑅(𝐹 (𝐹 “ (𝐹𝑥))) ↔ 𝑧 (𝐹 “ (𝐹𝑥)))
2719, 26sylibr 234 . . . 4 ((𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅(𝐹 (𝐹 “ (𝐹𝑥))))
2827exlimiv 1931 . . 3 (∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅(𝐹 (𝐹 “ (𝐹𝑥))))
2928ax-gen 1796 . 2 𝑧(∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅(𝐹 (𝐹 “ (𝐹𝑥))))
301, 4, 29ceqsexv2d 3487 1 𝑦𝑧(∃𝑤(𝑧𝑅𝑤𝑤𝑅𝑥) → 𝑧𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  wss 3897   cuni 4854   class class class wbr 5086   E cep 5510  ccnv 5610  cima 5614  ccom 5615  Fun wfun 6470   Fn wfn 6471  1-1-ontowf1o 6475  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator