![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpn0 | Structured version Visualization version GIF version |
Description: A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.) |
Ref | Expression |
---|---|
lhpne0.z | ⊢ 0 = (0.‘𝐾) |
lhpne0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpn0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . 4 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
2 | lhpne0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
3 | lhpne0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhp0lt 36078 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (lt‘𝐾)𝑊) |
5 | simpl 476 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ HL) | |
6 | hlop 35437 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
7 | eqid 2825 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 7, 2 | op0cl 35259 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ HL → 0 ∈ (Base‘𝐾)) |
10 | 9 | adantr 474 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
11 | simpr 479 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ 𝐻) | |
12 | 1 | pltne 17315 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑊 ∈ 𝐻) → ( 0 (lt‘𝐾)𝑊 → 0 ≠ 𝑊)) |
13 | 5, 10, 11, 12 | syl3anc 1496 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 (lt‘𝐾)𝑊 → 0 ≠ 𝑊)) |
14 | 4, 13 | mpd 15 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ≠ 𝑊) |
15 | 14 | necomd 3054 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 class class class wbr 4873 ‘cfv 6123 Basecbs 16222 ltcplt 17294 0.cp0 17390 OPcops 35247 HLchlt 35425 LHypclh 36059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-p1 17393 df-lat 17399 df-clat 17461 df-oposet 35251 df-ol 35253 df-oml 35254 df-covers 35341 df-ats 35342 df-atl 35373 df-cvlat 35397 df-hlat 35426 df-lhyp 36063 |
This theorem is referenced by: lhpexle 36080 |
Copyright terms: Public domain | W3C validator |