| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpn0 | Structured version Visualization version GIF version | ||
| Description: A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.) |
| Ref | Expression |
|---|---|
| lhpne0.z | ⊢ 0 = (0.‘𝐾) |
| lhpne0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpn0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 2 | lhpne0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 3 | lhpne0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 1, 2, 3 | lhp0lt 39992 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (lt‘𝐾)𝑊) |
| 5 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ HL) | |
| 6 | hlop 39350 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 8 | 7, 2 | op0cl 39172 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ HL → 0 ∈ (Base‘𝐾)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ 𝐻) | |
| 12 | 1 | pltne 18299 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑊 ∈ 𝐻) → ( 0 (lt‘𝐾)𝑊 → 0 ≠ 𝑊)) |
| 13 | 5, 10, 11, 12 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 (lt‘𝐾)𝑊 → 0 ≠ 𝑊)) |
| 14 | 4, 13 | mpd 15 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ≠ 𝑊) |
| 15 | 14 | necomd 2981 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 Basecbs 17185 ltcplt 18275 0.cp0 18388 OPcops 39160 HLchlt 39338 LHypclh 39973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-lhyp 39977 |
| This theorem is referenced by: lhpexle 39994 |
| Copyright terms: Public domain | W3C validator |