Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpn0 Structured version   Visualization version   GIF version

Theorem lhpn0 40113
Description: A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.)
Hypotheses
Ref Expression
lhpne0.z 0 = (0.‘𝐾)
lhpne0.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpn0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊0 )

Proof of Theorem lhpn0
StepHypRef Expression
1 eqid 2733 . . . 4 (lt‘𝐾) = (lt‘𝐾)
2 lhpne0.z . . . 4 0 = (0.‘𝐾)
3 lhpne0.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhp0lt 40112 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 (lt‘𝐾)𝑊)
5 simpl 482 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ HL)
6 hlop 39471 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
7 eqid 2733 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
87, 2op0cl 39293 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
96, 8syl 17 . . . . 5 (𝐾 ∈ HL → 0 ∈ (Base‘𝐾))
109adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ (Base‘𝐾))
11 simpr 484 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊𝐻)
121pltne 18248 . . . 4 ((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑊𝐻) → ( 0 (lt‘𝐾)𝑊0𝑊))
135, 10, 11, 12syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 0 (lt‘𝐾)𝑊0𝑊))
144, 13mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝑊)
1514necomd 2985 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930   class class class wbr 5095  cfv 6489  Basecbs 17130  ltcplt 18224  0.cp0 18337  OPcops 39281  HLchlt 39459  LHypclh 40093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18210  df-poset 18229  df-plt 18244  df-lub 18260  df-glb 18261  df-join 18262  df-meet 18263  df-p0 18339  df-p1 18340  df-lat 18348  df-clat 18415  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-lhyp 40097
This theorem is referenced by:  lhpexle  40114
  Copyright terms: Public domain W3C validator