| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpn0 | Structured version Visualization version GIF version | ||
| Description: A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.) |
| Ref | Expression |
|---|---|
| lhpne0.z | ⊢ 0 = (0.‘𝐾) |
| lhpne0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpn0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 2 | lhpne0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 3 | lhpne0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 1, 2, 3 | lhp0lt 40021 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (lt‘𝐾)𝑊) |
| 5 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ HL) | |
| 6 | hlop 39380 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 8 | 7, 2 | op0cl 39202 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ HL → 0 ∈ (Base‘𝐾)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ 𝐻) | |
| 12 | 1 | pltne 18230 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑊 ∈ 𝐻) → ( 0 (lt‘𝐾)𝑊 → 0 ≠ 𝑊)) |
| 13 | 5, 10, 11, 12 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 (lt‘𝐾)𝑊 → 0 ≠ 𝑊)) |
| 14 | 4, 13 | mpd 15 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ≠ 𝑊) |
| 15 | 14 | necomd 2981 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 class class class wbr 5089 ‘cfv 6477 Basecbs 17112 ltcplt 18206 0.cp0 18319 OPcops 39190 HLchlt 39368 LHypclh 40002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18330 df-clat 18397 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40006 |
| This theorem is referenced by: lhpexle 40023 |
| Copyright terms: Public domain | W3C validator |