![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntrval | Structured version Visualization version GIF version |
Description: Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥 ⇝𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.) |
Ref | Expression |
---|---|
pntrval.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
Ref | Expression |
---|---|
pntrval | ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6878 | . . 3 ⊢ (𝑎 = 𝐴 → (ψ‘𝑎) = (ψ‘𝐴)) | |
2 | id 22 | . . 3 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
3 | 1, 2 | oveq12d 7411 | . 2 ⊢ (𝑎 = 𝐴 → ((ψ‘𝑎) − 𝑎) = ((ψ‘𝐴) − 𝐴)) |
4 | pntrval.r | . 2 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
5 | ovex 7426 | . 2 ⊢ ((ψ‘𝐴) − 𝐴) ∈ V | |
6 | 3, 4, 5 | fvmpt 6984 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5224 ‘cfv 6532 (class class class)co 7393 − cmin 11426 ℝ+crp 12956 ψcchp 26524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6484 df-fun 6534 df-fv 6540 df-ov 7396 |
This theorem is referenced by: pntrmax 26994 pntrsumo1 26995 selbergr 26998 selberg3r 26999 selberg4r 27000 pntrlog2bndlem2 27008 pntrlog2bndlem4 27010 pntrlog2bnd 27014 pntpbnd1a 27015 pntibndlem2 27021 pntlem3 27039 |
Copyright terms: Public domain | W3C validator |