| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntrval | Structured version Visualization version GIF version | ||
| Description: Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥 ⇝𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntrval.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| Ref | Expression |
|---|---|
| pntrval | ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . 3 ⊢ (𝑎 = 𝐴 → (ψ‘𝑎) = (ψ‘𝐴)) | |
| 2 | id 22 | . . 3 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 3 | 1, 2 | oveq12d 7359 | . 2 ⊢ (𝑎 = 𝐴 → ((ψ‘𝑎) − 𝑎) = ((ψ‘𝐴) − 𝐴)) |
| 4 | pntrval.r | . 2 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 5 | ovex 7374 | . 2 ⊢ ((ψ‘𝐴) − 𝐴) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6924 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 − cmin 11339 ℝ+crp 12885 ψcchp 27025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: pntrmax 27497 pntrsumo1 27498 selbergr 27501 selberg3r 27502 selberg4r 27503 pntrlog2bndlem2 27511 pntrlog2bndlem4 27513 pntrlog2bnd 27517 pntpbnd1a 27518 pntibndlem2 27524 pntlem3 27542 |
| Copyright terms: Public domain | W3C validator |