MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrval Structured version   Visualization version   GIF version

Theorem pntrval 27495
Description: Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrval (𝐴 ∈ ℝ+ → (𝑅𝐴) = ((ψ‘𝐴) − 𝐴))
Distinct variable group:   𝐴,𝑎
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrval
StepHypRef Expression
1 fveq2 6817 . . 3 (𝑎 = 𝐴 → (ψ‘𝑎) = (ψ‘𝐴))
2 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
31, 2oveq12d 7359 . 2 (𝑎 = 𝐴 → ((ψ‘𝑎) − 𝑎) = ((ψ‘𝐴) − 𝐴))
4 pntrval.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
5 ovex 7374 . 2 ((ψ‘𝐴) − 𝐴) ∈ V
63, 4, 5fvmpt 6924 1 (𝐴 ∈ ℝ+ → (𝑅𝐴) = ((ψ‘𝐴) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cmpt 5167  cfv 6476  (class class class)co 7341  cmin 11339  +crp 12885  ψcchp 27025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344
This theorem is referenced by:  pntrmax  27497  pntrsumo1  27498  selbergr  27501  selberg3r  27502  selberg4r  27503  pntrlog2bndlem2  27511  pntrlog2bndlem4  27513  pntrlog2bnd  27517  pntpbnd1a  27518  pntibndlem2  27524  pntlem3  27542
  Copyright terms: Public domain W3C validator