MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrval Structured version   Visualization version   GIF version

Theorem pntrval 27542
Description: Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrval (𝐴 ∈ ℝ+ → (𝑅𝐴) = ((ψ‘𝐴) − 𝐴))
Distinct variable group:   𝐴,𝑎
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrval
StepHypRef Expression
1 fveq2 6886 . . 3 (𝑎 = 𝐴 → (ψ‘𝑎) = (ψ‘𝐴))
2 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
31, 2oveq12d 7431 . 2 (𝑎 = 𝐴 → ((ψ‘𝑎) − 𝑎) = ((ψ‘𝐴) − 𝐴))
4 pntrval.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
5 ovex 7446 . 2 ((ψ‘𝐴) − 𝐴) ∈ V
63, 4, 5fvmpt 6996 1 (𝐴 ∈ ℝ+ → (𝑅𝐴) = ((ψ‘𝐴) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cmpt 5205  cfv 6541  (class class class)co 7413  cmin 11474  +crp 13016  ψcchp 27072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416
This theorem is referenced by:  pntrmax  27544  pntrsumo1  27545  selbergr  27548  selberg3r  27549  selberg4r  27550  pntrlog2bndlem2  27558  pntrlog2bndlem4  27560  pntrlog2bnd  27564  pntpbnd1a  27565  pntibndlem2  27571  pntlem3  27589
  Copyright terms: Public domain W3C validator