| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntrval | Structured version Visualization version GIF version | ||
| Description: Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥 ⇝𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.) |
| Ref | Expression |
|---|---|
| pntrval.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| Ref | Expression |
|---|---|
| pntrval | ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . . 3 ⊢ (𝑎 = 𝐴 → (ψ‘𝑎) = (ψ‘𝐴)) | |
| 2 | id 22 | . . 3 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 3 | 1, 2 | oveq12d 7431 | . 2 ⊢ (𝑎 = 𝐴 → ((ψ‘𝑎) − 𝑎) = ((ψ‘𝐴) − 𝐴)) |
| 4 | pntrval.r | . 2 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
| 5 | ovex 7446 | . 2 ⊢ ((ψ‘𝐴) − 𝐴) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6996 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 − cmin 11474 ℝ+crp 13016 ψcchp 27072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 |
| This theorem is referenced by: pntrmax 27544 pntrsumo1 27545 selbergr 27548 selberg3r 27549 selberg4r 27550 pntrlog2bndlem2 27558 pntrlog2bndlem4 27560 pntrlog2bnd 27564 pntpbnd1a 27565 pntibndlem2 27571 pntlem3 27589 |
| Copyright terms: Public domain | W3C validator |