MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrval Structured version   Visualization version   GIF version

Theorem pntrval 27624
Description: Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrval (𝐴 ∈ ℝ+ → (𝑅𝐴) = ((ψ‘𝐴) − 𝐴))
Distinct variable group:   𝐴,𝑎
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrval
StepHypRef Expression
1 fveq2 6920 . . 3 (𝑎 = 𝐴 → (ψ‘𝑎) = (ψ‘𝐴))
2 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
31, 2oveq12d 7466 . 2 (𝑎 = 𝐴 → ((ψ‘𝑎) − 𝑎) = ((ψ‘𝐴) − 𝐴))
4 pntrval.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
5 ovex 7481 . 2 ((ψ‘𝐴) − 𝐴) ∈ V
63, 4, 5fvmpt 7029 1 (𝐴 ∈ ℝ+ → (𝑅𝐴) = ((ψ‘𝐴) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573  (class class class)co 7448  cmin 11520  +crp 13057  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451
This theorem is referenced by:  pntrmax  27626  pntrsumo1  27627  selbergr  27630  selberg3r  27631  selberg4r  27632  pntrlog2bndlem2  27640  pntrlog2bndlem4  27642  pntrlog2bnd  27646  pntpbnd1a  27647  pntibndlem2  27653  pntlem3  27671
  Copyright terms: Public domain W3C validator