MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrval Structured version   Visualization version   GIF version

Theorem pntrval 26992
Description: Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrval (𝐴 ∈ ℝ+ → (𝑅𝐴) = ((ψ‘𝐴) − 𝐴))
Distinct variable group:   𝐴,𝑎
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrval
StepHypRef Expression
1 fveq2 6878 . . 3 (𝑎 = 𝐴 → (ψ‘𝑎) = (ψ‘𝐴))
2 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
31, 2oveq12d 7411 . 2 (𝑎 = 𝐴 → ((ψ‘𝑎) − 𝑎) = ((ψ‘𝐴) − 𝐴))
4 pntrval.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
5 ovex 7426 . 2 ((ψ‘𝐴) − 𝐴) ∈ V
63, 4, 5fvmpt 6984 1 (𝐴 ∈ ℝ+ → (𝑅𝐴) = ((ψ‘𝐴) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cmpt 5224  cfv 6532  (class class class)co 7393  cmin 11426  +crp 12956  ψcchp 26524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6484  df-fun 6534  df-fv 6540  df-ov 7396
This theorem is referenced by:  pntrmax  26994  pntrsumo1  26995  selbergr  26998  selberg3r  26999  selberg4r  27000  pntrlog2bndlem2  27008  pntrlog2bndlem4  27010  pntrlog2bnd  27014  pntpbnd1a  27015  pntibndlem2  27021  pntlem3  27039
  Copyright terms: Public domain W3C validator