MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem2 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem2 27640
Description: Lemma for pntrlog2bnd 27646. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bndlem2.1 (𝜑𝐴 ∈ ℝ+)
pntrlog2bndlem2.2 (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
Assertion
Ref Expression
pntrlog2bndlem2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦,𝐴   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)

Proof of Theorem pntrlog2bndlem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 1red 11291 . 2 (𝜑 → 1 ∈ ℝ)
2 elioore 13437 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
32adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
4 chpcl 27185 . . . . . . 7 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
53, 4syl 17 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℝ)
65recnd 11318 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℂ)
7 fzfid 14024 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
83adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
9 elfznn 13613 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
1110peano2nnd 12310 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℕ)
128, 11nndivred 12347 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ)
13 chpcl 27185 . . . . . . . . 9 ((𝑥 / (𝑛 + 1)) ∈ ℝ → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
1412, 13syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
1514, 12readdcld 11319 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ)
167, 15fsumrecl 15782 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ)
1716recnd 11318 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
183recnd 11318 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
19 eliooord 13466 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
2019adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
2120simpld 494 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
223, 21rplogcld 26689 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2322rpcnd 13101 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2418, 23mulcld 11310 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
25 1rp 13061 . . . . . . . . 9 1 ∈ ℝ+
2625a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
27 1red 11291 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
2827, 3, 21ltled 11438 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
293, 26, 28rpgecld 13138 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
3029rpne0d 13104 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
3122rpne0d 13104 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
3218, 23, 30, 31mulne0d 11942 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
336, 17, 24, 32divdird 12108 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))))
3433mpteq2dva 5266 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))))
3529, 22rpmulcld 13115 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
365, 35rerpdivcld 13130 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / (𝑥 · (log‘𝑥))) ∈ ℝ)
3716, 35rerpdivcld 13130 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
386, 18, 23, 30, 31divdiv1d 12101 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = ((ψ‘𝑥) / (𝑥 · (log‘𝑥))))
395, 29rerpdivcld 13130 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4039recnd 11318 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4140, 23, 31divrecd 12073 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥))))
4238, 41eqtr3d 2782 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥))))
4342mpteq2dva 5266 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))))
4422rprecred 13110 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
4529ex 412 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
4645ssrdv 4014 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ+)
47 chpo1ub 27542 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
4847a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
4946, 48o1res2 15609 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
50 divlogrlim 26695 . . . . . . 7 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
51 rlimo1 15663 . . . . . . 7 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5250, 51mp1i 13 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5339, 44, 49, 52o1mul2 15671 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
5443, 53eqeltrd 2844 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
55 pntrlog2bndlem2.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
5655rpred 13099 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5756, 1readdcld 11319 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℝ)
5857adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈ ℝ)
5927, 44readdcld 11319 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℝ)
60 ioossre 13468 . . . . . . 7 (1(,)+∞) ⊆ ℝ
6157recnd 11318 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℂ)
62 o1const 15666 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ (𝐴 + 1) ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 + 1)) ∈ 𝑂(1))
6360, 61, 62sylancr 586 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 + 1)) ∈ 𝑂(1))
64 1cnd 11285 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
65 o1const 15666 . . . . . . . 8 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
6660, 64, 65sylancr 586 . . . . . . 7 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
6727, 44, 66, 52o1add2 15670 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 / (log‘𝑥)))) ∈ 𝑂(1))
6858, 59, 63, 67o1mul2 15671 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) ∈ 𝑂(1))
6958, 59remulcld 11320 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ∈ ℝ)
7037recnd 11318 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
71 chpge0 27187 . . . . . . . . . . . 12 ((𝑥 / (𝑛 + 1)) ∈ ℝ → 0 ≤ (ψ‘(𝑥 / (𝑛 + 1))))
7212, 71syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (ψ‘(𝑥 / (𝑛 + 1))))
7310nnrpd 13097 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
7425a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
7573, 74rpaddcld 13114 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℝ+)
7629adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
7776rpge0d 13103 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 𝑥)
788, 75, 77divge0d 13139 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / (𝑛 + 1)))
7914, 12, 72, 78addge0d 11866 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
807, 15, 79fsumge0 15843 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
8116, 35, 80divge0d 13139 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
8237, 81absidd 15471 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
8369recnd 11318 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ∈ ℂ)
8483abscld 15485 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) ∈ ℝ)
8516, 29rerpdivcld 13130 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ∈ ℝ)
8629relogcld 26683 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
8786, 27readdcld 11319 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
8858, 87remulcld 11320 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · ((log‘𝑥) + 1)) ∈ ℝ)
8958, 3remulcld 11320 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈ ℝ)
9010nnrecred 12344 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
917, 90fsumrecl 15782 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
9289, 91remulcld 11320 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) ∈ ℝ)
9389, 87remulcld 11320 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) ∈ ℝ)
9456ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
95 1red 11291 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
9694, 95readdcld 11319 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 + 1) ∈ ℝ)
9796, 8remulcld 11320 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · 𝑥) ∈ ℝ)
9897, 90remulcld 11320 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) · (1 / 𝑛)) ∈ ℝ)
9997, 11nndivred 12347 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) ∈ ℝ)
10097, 10nndivred 12347 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / 𝑛) ∈ ℝ)
10194, 12remulcld 11320 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · (𝑥 / (𝑛 + 1))) ∈ ℝ)
102 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / (𝑛 + 1)) → (ψ‘𝑦) = (ψ‘(𝑥 / (𝑛 + 1))))
103 oveq2 7456 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / (𝑛 + 1)) → (𝐴 · 𝑦) = (𝐴 · (𝑥 / (𝑛 + 1))))
104102, 103breq12d 5179 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / (𝑛 + 1)) → ((ψ‘𝑦) ≤ (𝐴 · 𝑦) ↔ (ψ‘(𝑥 / (𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1)))))
105 pntrlog2bndlem2.2 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
106105ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
10776, 75rpdivcld 13116 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ+)
108104, 106, 107rspcdva 3636 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1))))
10914, 101, 12, 108leadd1dd 11904 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
11061ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 + 1) ∈ ℂ)
11118adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
11210nncnd 12309 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
113 1cnd 11285 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
114112, 113addcld 11309 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℂ)
11511nnne0d 12343 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ≠ 0)
116110, 111, 114, 115divassd 12105 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) = ((𝐴 + 1) · (𝑥 / (𝑛 + 1))))
11794recnd 11318 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℂ)
118111, 114, 115divcld 12070 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℂ)
119117, 113, 118adddird 11315 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · (𝑥 / (𝑛 + 1))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1)))))
120118mullidd 11308 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · (𝑥 / (𝑛 + 1))) = (𝑥 / (𝑛 + 1)))
121120oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1)))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
122116, 119, 1213eqtrd 2784 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
123109, 122breqtrrd 5194 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / (𝑛 + 1)))
12456adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
12555adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
126125rpge0d 13103 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐴)
12726rpge0d 13103 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 1)
128124, 27, 126, 127addge0d 11866 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐴 + 1))
12929rpge0d 13103 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
13058, 3, 128, 129mulge0d 11867 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ ((𝐴 + 1) · 𝑥))
131130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((𝐴 + 1) · 𝑥))
13210nnred 12308 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
133132lep1d 12226 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≤ (𝑛 + 1))
13473, 75, 97, 131, 133lediv2ad 13121 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) ≤ (((𝐴 + 1) · 𝑥) / 𝑛))
13515, 99, 100, 123, 134letrd 11447 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / 𝑛))
13697recnd 11318 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · 𝑥) ∈ ℂ)
13710nnne0d 12343 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
138136, 112, 137divrecd 12073 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / 𝑛) = (((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
139135, 138breqtrd 5192 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
1407, 15, 98, 139fsumle 15847 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
14189recnd 11318 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈ ℂ)
142112, 137reccld 12063 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
1437, 141, 142fsummulc2 15832 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
144140, 143breqtrrd 5194 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)))
145 harmonicubnd 27071 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
1463, 28, 145syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
14791, 87, 89, 130, 146lemul2ad 12235 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)))
14816, 92, 93, 144, 147letrd 11447 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)))
14961adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈ ℂ)
15087recnd 11318 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
151149, 18, 150mul32d 11500 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) = (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥))
152148, 151breqtrd 5192 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥))
15316, 88, 29ledivmul2d 13153 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1)) ↔ Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥)))
154152, 153mpbird 257 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1)))
15585, 88, 22, 154lediv1dd 13157 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)))
15617, 18, 23, 30, 31divdiv1d 12101 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
157 1cnd 11285 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
15823, 157addcld 11309 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
159149, 158, 23, 31divassd 12105 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (((log‘𝑥) + 1) / (log‘𝑥))))
16023, 157, 23, 31divdird 12108 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) / (log‘𝑥)) = (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))))
16123, 31dividd 12068 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
162161oveq1d 7463 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))) = (1 + (1 / (log‘𝑥))))
163160, 162eqtr2d 2781 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) = (((log‘𝑥) + 1) / (log‘𝑥)))
164163oveq2d 7464 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) = ((𝐴 + 1) · (((log‘𝑥) + 1) / (log‘𝑥))))
165159, 164eqtr4d 2783 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))
166155, 156, 1653brtr3d 5197 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))
16769leabsd 15463 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
16837, 69, 84, 166, 167letrd 11447 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
16982, 168eqbrtrd 5188 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
170169adantrr 716 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
1711, 68, 69, 70, 170o1le 15701 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
17236, 37, 54, 171o1add2 15670 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1))
17334, 172eqeltrd 2844 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
1745, 16readdcld 11319 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ)
175174, 35rerpdivcld 13130 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
176 pntrlog2bnd.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
177176pntrf 27625 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
178177ffvelcdmi 7117 . . . . . . . . . 10 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
179107, 178syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
180179recnd 11318 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
18176, 73rpdivcld 13116 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
182177ffvelcdmi 7117 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
183181, 182syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
184183recnd 11318 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
185180, 184subcld 11647 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
186185abscld 15485 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
187132, 186remulcld 11320 . . . . 5 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
1887, 187fsumrecl 15782 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
189188, 35rerpdivcld 13130 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
190189recnd 11318 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
19173rpge0d 13103 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 𝑛)
192185absge0d 15493 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))
193132, 186, 191, 192mulge0d 11867 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))))
1947, 187, 193fsumge0 15843 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))))
195188, 35, 194divge0d 13139 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))
196189, 195absidd 15471 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))
1976, 17addcld 11309 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ)
198197, 24, 32divcld 12070 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
199198abscld 15485 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
2008, 10nndivred 12347 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
201 chpcl 27185 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
202200, 201syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
203202, 200readdcld 11319 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) ∈ ℝ)
204203, 15resubcld 11718 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ)
205132, 204remulcld 11320 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℝ)
206176pntrval 27624 . . . . . . . . . . . . . . 15 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))))
207107, 206syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))))
208176pntrval 27624 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))
209181, 208syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))
210207, 209oveq12d 7466 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))))
21114recnd 11318 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
212202recnd 11318 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
213111, 112, 137divcld 12070 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
214211, 118, 212, 213sub4d 11696 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))
215210, 214eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))
216215fveq2d 6924 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) = (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
217211, 212subcld 11647 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
218118, 213subcld 11647 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)) ∈ ℂ)
219217, 218abs2dif2d 15507 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
220216, 219eqbrtrd 5188 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
22173, 75, 8, 77, 133lediv2ad 13121 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛))
222 chpwordi 27218 . . . . . . . . . . . . . 14 (((𝑥 / (𝑛 + 1)) ∈ ℝ ∧ (𝑥 / 𝑛) ∈ ℝ ∧ (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛)) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (ψ‘(𝑥 / 𝑛)))
22312, 200, 221, 222syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (ψ‘(𝑥 / 𝑛)))
22414, 202, 223abssuble0d 15481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) = ((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))))
22512, 200, 221abssuble0d 15481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))) = ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1))))
226224, 225oveq12d 7466 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1)))))
227212, 213, 211, 118addsub4d 11694 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1)))))
228226, 227eqtr4d 2783 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
229220, 228breqtrd 5192 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
230186, 204, 132, 191, 229lemul2ad 12235 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
2317, 187, 205, 230fsumle 15847 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
232204recnd 11318 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ)
233112, 232mulcld 11310 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ)
2347, 233fsumcl 15781 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ)
2356, 17negdi2d 11661 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
23629rprege0d 13106 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
237 flge0nn0 13871 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
238 nn0p1nn 12592 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
239236, 237, 2383syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℕ)
2403, 239nndivred 12347 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ)
241 2re 12367 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
242241a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
243 flltp1 13851 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → 𝑥 < ((⌊‘𝑥) + 1))
2443, 243syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 < ((⌊‘𝑥) + 1))
245239nncnd 12309 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℂ)
246245mulridd 11307 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · 1) = ((⌊‘𝑥) + 1))
247244, 246breqtrrd 5194 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 < (((⌊‘𝑥) + 1) · 1))
248239nnrpd 13097 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℝ+)
2493, 27, 248ltdivmuld 13150 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) < 1 ↔ 𝑥 < (((⌊‘𝑥) + 1) · 1)))
250247, 249mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 1)
251 1lt2 12464 . . . . . . . . . . . . . . . . . . . 20 1 < 2
252251a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 2)
253240, 27, 242, 250, 252lttrd 11451 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 2)
254 chpeq0 27270 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
255240, 254syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
256253, 255mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0)
257256oveq1d 7463 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))) = (0 + (𝑥 / ((⌊‘𝑥) + 1))))
258240recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℂ)
259258addlidd 11491 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → (0 + (𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1)))
260257, 259eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1)))
261260oveq2d 7464 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) = (((⌊‘𝑥) + 1) · (𝑥 / ((⌊‘𝑥) + 1))))
262239nnne0d 12343 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ≠ 0)
26318, 245, 262divcan2d 12072 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · (𝑥 / ((⌊‘𝑥) + 1))) = 𝑥)
264261, 263eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) = 𝑥)
26518div1d 12062 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
266265fveq2d 6924 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / 1)) = (ψ‘𝑥))
267266, 265oveq12d 7466 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / 1)) + (𝑥 / 1)) = ((ψ‘𝑥) + 𝑥))
268267oveq2d 7464 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1))) = (1 · ((ψ‘𝑥) + 𝑥)))
2695, 3readdcld 11319 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + 𝑥) ∈ ℝ)
270269recnd 11318 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + 𝑥) ∈ ℂ)
271270mullidd 11308 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘𝑥) + 𝑥)) = ((ψ‘𝑥) + 𝑥))
272268, 271eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1))) = ((ψ‘𝑥) + 𝑥))
273264, 272oveq12d 7466 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) = (𝑥 − ((ψ‘𝑥) + 𝑥)))
274270, 18negsubdi2d 11663 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → -(((ψ‘𝑥) + 𝑥) − 𝑥) = (𝑥 − ((ψ‘𝑥) + 𝑥)))
2756, 18pncand 11648 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + 𝑥) − 𝑥) = (ψ‘𝑥))
276275negeqd 11530 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → -(((ψ‘𝑥) + 𝑥) − 𝑥) = -(ψ‘𝑥))
277273, 274, 2763eqtr2d 2786 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) = -(ψ‘𝑥))
2783flcld 13849 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℤ)
279 fzval3 13785 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
280278, 279syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
281280eqcomd 2746 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
282112, 113pncan2d 11649 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 𝑛) = 1)
283282oveq1d 7463 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
28415recnd 11318 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
285284mullidd 11308 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
286283, 285eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
287281, 286sumeq12rdv 15755 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
288277, 287oveq12d 7466 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
289 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑥 / 𝑚) = (𝑥 / 𝑛))
290289fveq2d 6924 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 𝑛)))
291290, 289oveq12d 7466 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))
292291ancli 548 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 = 𝑛 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))))
293 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 + 1) → (𝑥 / 𝑚) = (𝑥 / (𝑛 + 1)))
294293fveq2d 6924 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / (𝑛 + 1))))
295294, 293oveq12d 7466 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
296295ancli 548 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑚 = (𝑛 + 1) ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
297 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (𝑥 / 𝑚) = (𝑥 / 1))
298297fveq2d 6924 . . . . . . . . . . . . . 14 (𝑚 = 1 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 1)))
299298, 297oveq12d 7466 . . . . . . . . . . . . 13 (𝑚 = 1 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))
300299ancli 548 . . . . . . . . . . . 12 (𝑚 = 1 → (𝑚 = 1 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1))))
301 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑚 = ((⌊‘𝑥) + 1) → (𝑥 / 𝑚) = (𝑥 / ((⌊‘𝑥) + 1)))
302301fveq2d 6924 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / ((⌊‘𝑥) + 1))))
303302, 301oveq12d 7466 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))))
304303ancli 548 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → (𝑚 = ((⌊‘𝑥) + 1) ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))))
305 nnuz 12946 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
306239, 305eleqtrdi 2854 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
307 elfznn 13613 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
308307adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
309308nncnd 12309 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℂ)
3103adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑥 ∈ ℝ)
311310, 308nndivred 12347 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑥 / 𝑚) ∈ ℝ)
312 chpcl 27185 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
313311, 312syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
314313, 311readdcld 11319 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℝ)
315314recnd 11318 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℂ)
316292, 296, 300, 304, 306, 309, 315fsumparts 15854 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
317212, 213addcld 11309 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) ∈ ℂ)
318211, 118addcld 11309 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
319317, 318negsubdi2d 11663 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))))
320319oveq2d 7464 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))))
321112, 232mulneg2d 11744 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
322320, 321eqtr3d 2782 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
323281, 322sumeq12rdv 15755 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
324316, 323eqtr3d 2782 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
325235, 288, 3243eqtr2d 2786 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
3267, 233fsumneg 15835 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
327325, 326eqtr2d 2781 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → -Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
328234, 197, 327neg11d 11659 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
329231, 328breqtrd 5192 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
330188, 174, 35, 329lediv1dd 13157 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))
331175leabsd 15463 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
332189, 175, 199, 330, 331letrd 11447 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
333196, 332eqbrtrd 5188 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
334333adantrr 716 . 2 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
3351, 173, 175, 190, 334o1le 15701 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  +crp 13057  (,)cioo 13407  ...cfz 13567  ..^cfzo 13711  cfl 13841  abscabs 15283  𝑟 crli 15531  𝑂(1)co1 15532  Σcsu 15734  logclog 26614  Λcvma 27153  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-o1 15536  df-lo1 15537  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-em 27054  df-cht 27158  df-vma 27159  df-chp 27160  df-ppi 27161
This theorem is referenced by:  pntrlog2bndlem3  27641
  Copyright terms: Public domain W3C validator