MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem2 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem2 25489
Description: Lemma for pntrlog2bnd 25495. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bndlem2.1 (𝜑𝐴 ∈ ℝ+)
pntrlog2bndlem2.2 (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
Assertion
Ref Expression
pntrlog2bndlem2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦,𝐴   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)

Proof of Theorem pntrlog2bndlem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 1red 10258 . 2 (𝜑 → 1 ∈ ℝ)
2 elioore 12411 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
32adantl 467 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
4 chpcl 25072 . . . . . . 7 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
53, 4syl 17 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℝ)
65recnd 10271 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℂ)
7 fzfid 12981 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
83adantr 466 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
9 elfznn 12578 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109adantl 467 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
1110peano2nnd 11240 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℕ)
128, 11nndivred 11272 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ)
13 chpcl 25072 . . . . . . . . 9 ((𝑥 / (𝑛 + 1)) ∈ ℝ → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
1412, 13syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
1514, 12readdcld 10272 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ)
167, 15fsumrecl 14674 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ)
1716recnd 10271 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
183recnd 10271 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
19 eliooord 12439 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
2019adantl 467 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
2120simpld 478 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
223, 21rplogcld 24597 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2322rpcnd 12078 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2418, 23mulcld 10263 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
25 1rp 12040 . . . . . . . . 9 1 ∈ ℝ+
2625a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
27 1red 10258 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
2827, 3, 21ltled 10388 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
293, 26, 28rpgecld 12115 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
3029rpne0d 12081 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
3122rpne0d 12081 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
3218, 23, 30, 31mulne0d 10882 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
336, 17, 24, 32divdird 11042 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))))
3433mpteq2dva 4879 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))))
3529, 22rpmulcld 12092 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
365, 35rerpdivcld 12107 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / (𝑥 · (log‘𝑥))) ∈ ℝ)
3716, 35rerpdivcld 12107 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
386, 18, 23, 30, 31divdiv1d 11035 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = ((ψ‘𝑥) / (𝑥 · (log‘𝑥))))
395, 29rerpdivcld 12107 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4039recnd 10271 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4140, 23, 31divrecd 11007 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥))))
4238, 41eqtr3d 2807 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥))))
4342mpteq2dva 4879 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))))
4422rprecred 12087 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
4529ex 397 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
4645ssrdv 3759 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ+)
47 chpo1ub 25391 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
4847a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
4946, 48o1res2 14503 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
50 divlogrlim 24603 . . . . . . 7 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
51 rlimo1 14556 . . . . . . 7 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5250, 51mp1i 13 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5339, 44, 49, 52o1mul2 14564 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
5443, 53eqeltrd 2850 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
55 pntrlog2bndlem2.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
5655rpred 12076 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5756, 1readdcld 10272 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℝ)
5857adantr 466 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈ ℝ)
5927, 44readdcld 10272 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℝ)
60 ioossre 12441 . . . . . . 7 (1(,)+∞) ⊆ ℝ
6157recnd 10271 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℂ)
62 o1const 14559 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ (𝐴 + 1) ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 + 1)) ∈ 𝑂(1))
6360, 61, 62sylancr 569 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 + 1)) ∈ 𝑂(1))
64 1cnd 10259 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
65 o1const 14559 . . . . . . . 8 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
6660, 64, 65sylancr 569 . . . . . . 7 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
6727, 44, 66, 52o1add2 14563 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 / (log‘𝑥)))) ∈ 𝑂(1))
6858, 59, 63, 67o1mul2 14564 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) ∈ 𝑂(1))
6958, 59remulcld 10273 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ∈ ℝ)
7037recnd 10271 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
71 chpge0 25074 . . . . . . . . . . . 12 ((𝑥 / (𝑛 + 1)) ∈ ℝ → 0 ≤ (ψ‘(𝑥 / (𝑛 + 1))))
7212, 71syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (ψ‘(𝑥 / (𝑛 + 1))))
7310nnrpd 12074 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
7425a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
7573, 74rpaddcld 12091 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℝ+)
7629adantr 466 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
7776rpge0d 12080 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 𝑥)
788, 75, 77divge0d 12116 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / (𝑛 + 1)))
7914, 12, 72, 78addge0d 10806 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
807, 15, 79fsumge0 14735 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
8116, 35, 80divge0d 12116 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
8237, 81absidd 14370 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
8369recnd 10271 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ∈ ℂ)
8483abscld 14384 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) ∈ ℝ)
8516, 29rerpdivcld 12107 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ∈ ℝ)
8629relogcld 24591 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
8786, 27readdcld 10272 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
8858, 87remulcld 10273 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · ((log‘𝑥) + 1)) ∈ ℝ)
8958, 3remulcld 10273 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈ ℝ)
9010nnrecred 11269 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
917, 90fsumrecl 14674 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
9289, 91remulcld 10273 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) ∈ ℝ)
9389, 87remulcld 10273 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) ∈ ℝ)
9456ad2antrr 699 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
95 1red 10258 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
9694, 95readdcld 10272 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 + 1) ∈ ℝ)
9796, 8remulcld 10273 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · 𝑥) ∈ ℝ)
9897, 90remulcld 10273 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) · (1 / 𝑛)) ∈ ℝ)
9997, 11nndivred 11272 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) ∈ ℝ)
10097, 10nndivred 11272 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / 𝑛) ∈ ℝ)
10194, 12remulcld 10273 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · (𝑥 / (𝑛 + 1))) ∈ ℝ)
102 fveq2 6333 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / (𝑛 + 1)) → (ψ‘𝑦) = (ψ‘(𝑥 / (𝑛 + 1))))
103 oveq2 6802 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / (𝑛 + 1)) → (𝐴 · 𝑦) = (𝐴 · (𝑥 / (𝑛 + 1))))
104102, 103breq12d 4800 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / (𝑛 + 1)) → ((ψ‘𝑦) ≤ (𝐴 · 𝑦) ↔ (ψ‘(𝑥 / (𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1)))))
105 pntrlog2bndlem2.2 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
106105ad2antrr 699 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
10776, 75rpdivcld 12093 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ+)
108104, 106, 107rspcdva 3467 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1))))
10914, 101, 12, 108leadd1dd 10844 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
11061ad2antrr 699 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 + 1) ∈ ℂ)
11118adantr 466 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
11210nncnd 11239 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
113 1cnd 10259 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
114112, 113addcld 10262 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℂ)
11511nnne0d 11268 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ≠ 0)
116110, 111, 114, 115divassd 11039 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) = ((𝐴 + 1) · (𝑥 / (𝑛 + 1))))
11794recnd 10271 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℂ)
118111, 114, 115divcld 11004 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℂ)
119117, 113, 118adddird 10268 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · (𝑥 / (𝑛 + 1))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1)))))
120118mulid2d 10261 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · (𝑥 / (𝑛 + 1))) = (𝑥 / (𝑛 + 1)))
121120oveq2d 6810 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1)))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
122116, 119, 1213eqtrd 2809 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
123109, 122breqtrrd 4815 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / (𝑛 + 1)))
12456adantr 466 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
12555adantr 466 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
126125rpge0d 12080 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐴)
12726rpge0d 12080 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 1)
128124, 27, 126, 127addge0d 10806 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐴 + 1))
12929rpge0d 12080 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
13058, 3, 128, 129mulge0d 10807 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ ((𝐴 + 1) · 𝑥))
131130adantr 466 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((𝐴 + 1) · 𝑥))
13210nnred 11238 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
133132lep1d 11158 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≤ (𝑛 + 1))
13473, 75, 97, 131, 133lediv2ad 12098 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) ≤ (((𝐴 + 1) · 𝑥) / 𝑛))
13515, 99, 100, 123, 134letrd 10397 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / 𝑛))
13697recnd 10271 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · 𝑥) ∈ ℂ)
13710nnne0d 11268 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
138136, 112, 137divrecd 11007 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / 𝑛) = (((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
139135, 138breqtrd 4813 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
1407, 15, 98, 139fsumle 14739 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
14189recnd 10271 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈ ℂ)
142112, 137reccld 10997 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
1437, 141, 142fsummulc2 14724 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
144140, 143breqtrrd 4815 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)))
145 harmonicubnd 24958 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
1463, 28, 145syl2anc 567 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
14791, 87, 89, 130, 146lemul2ad 11167 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)))
14816, 92, 93, 144, 147letrd 10397 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)))
14961adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈ ℂ)
15087recnd 10271 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
151149, 18, 150mul32d 10449 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) = (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥))
152148, 151breqtrd 4813 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥))
15316, 88, 29ledivmul2d 12130 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1)) ↔ Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥)))
154152, 153mpbird 247 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1)))
15585, 88, 22, 154lediv1dd 12134 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)))
15617, 18, 23, 30, 31divdiv1d 11035 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
157 1cnd 10259 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
15823, 157addcld 10262 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
159149, 158, 23, 31divassd 11039 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (((log‘𝑥) + 1) / (log‘𝑥))))
16023, 157, 23, 31divdird 11042 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) / (log‘𝑥)) = (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))))
16123, 31dividd 11002 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
162161oveq1d 6809 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))) = (1 + (1 / (log‘𝑥))))
163160, 162eqtr2d 2806 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) = (((log‘𝑥) + 1) / (log‘𝑥)))
164163oveq2d 6810 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) = ((𝐴 + 1) · (((log‘𝑥) + 1) / (log‘𝑥))))
165159, 164eqtr4d 2808 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))
166155, 156, 1653brtr3d 4818 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))
16769leabsd 14362 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
16837, 69, 84, 166, 167letrd 10397 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
16982, 168eqbrtrd 4809 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
170169adantrr 690 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
1711, 68, 69, 70, 170o1le 14592 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
17236, 37, 54, 171o1add2 14563 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1))
17334, 172eqeltrd 2850 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
1745, 16readdcld 10272 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ)
175174, 35rerpdivcld 12107 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
176 pntrlog2bnd.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
177176pntrf 25474 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
178177ffvelrni 6502 . . . . . . . . . 10 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
179107, 178syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
180179recnd 10271 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
18176, 73rpdivcld 12093 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
182177ffvelrni 6502 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
183181, 182syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
184183recnd 10271 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
185180, 184subcld 10595 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
186185abscld 14384 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
187132, 186remulcld 10273 . . . . 5 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
1887, 187fsumrecl 14674 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
189188, 35rerpdivcld 12107 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
190189recnd 10271 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
19173rpge0d 12080 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 𝑛)
192185absge0d 14392 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))
193132, 186, 191, 192mulge0d 10807 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))))
1947, 187, 193fsumge0 14735 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))))
195188, 35, 194divge0d 12116 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))
196189, 195absidd 14370 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))
1976, 17addcld 10262 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ)
198197, 24, 32divcld 11004 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
199198abscld 14384 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
2008, 10nndivred 11272 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
201 chpcl 25072 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
202200, 201syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
203202, 200readdcld 10272 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) ∈ ℝ)
204203, 15resubcld 10661 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ)
205132, 204remulcld 10273 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℝ)
206176pntrval 25473 . . . . . . . . . . . . . . 15 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))))
207107, 206syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))))
208176pntrval 25473 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))
209181, 208syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))
210207, 209oveq12d 6812 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))))
21114recnd 10271 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
212202recnd 10271 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
213111, 112, 137divcld 11004 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
214211, 118, 212, 213sub4d 10644 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))
215210, 214eqtrd 2805 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))
216215fveq2d 6337 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) = (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
217211, 212subcld 10595 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
218118, 213subcld 10595 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)) ∈ ℂ)
219217, 218abs2dif2d 14406 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
220216, 219eqbrtrd 4809 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
22173, 75, 8, 77, 133lediv2ad 12098 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛))
222 chpwordi 25105 . . . . . . . . . . . . . 14 (((𝑥 / (𝑛 + 1)) ∈ ℝ ∧ (𝑥 / 𝑛) ∈ ℝ ∧ (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛)) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (ψ‘(𝑥 / 𝑛)))
22312, 200, 221, 222syl3anc 1476 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (ψ‘(𝑥 / 𝑛)))
22414, 202, 223abssuble0d 14380 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) = ((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))))
22512, 200, 221abssuble0d 14380 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))) = ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1))))
226224, 225oveq12d 6812 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1)))))
227212, 213, 211, 118addsub4d 10642 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1)))))
228226, 227eqtr4d 2808 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
229220, 228breqtrd 4813 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
230186, 204, 132, 191, 229lemul2ad 11167 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
2317, 187, 205, 230fsumle 14739 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
232204recnd 10271 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ)
233112, 232mulcld 10263 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ)
2347, 233fsumcl 14673 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ)
2356, 17negdi2d 10609 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
23629rprege0d 12083 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
237 flge0nn0 12830 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
238 nn0p1nn 11535 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
239236, 237, 2383syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℕ)
2403, 239nndivred 11272 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ)
241 2re 11293 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
242241a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
243 flltp1 12810 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → 𝑥 < ((⌊‘𝑥) + 1))
2443, 243syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 < ((⌊‘𝑥) + 1))
245239nncnd 11239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℂ)
246245mulid1d 10260 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · 1) = ((⌊‘𝑥) + 1))
247244, 246breqtrrd 4815 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 < (((⌊‘𝑥) + 1) · 1))
248239nnrpd 12074 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℝ+)
2493, 27, 248ltdivmuld 12127 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) < 1 ↔ 𝑥 < (((⌊‘𝑥) + 1) · 1)))
250247, 249mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 1)
251 1lt2 11397 . . . . . . . . . . . . . . . . . . . 20 1 < 2
252251a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 2)
253240, 27, 242, 250, 252lttrd 10401 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 2)
254 chpeq0 25155 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
255240, 254syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
256253, 255mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0)
257256oveq1d 6809 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))) = (0 + (𝑥 / ((⌊‘𝑥) + 1))))
258240recnd 10271 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℂ)
259258addid2d 10440 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → (0 + (𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1)))
260257, 259eqtrd 2805 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1)))
261260oveq2d 6810 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) = (((⌊‘𝑥) + 1) · (𝑥 / ((⌊‘𝑥) + 1))))
262239nnne0d 11268 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ≠ 0)
26318, 245, 262divcan2d 11006 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · (𝑥 / ((⌊‘𝑥) + 1))) = 𝑥)
264261, 263eqtrd 2805 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) = 𝑥)
26518div1d 10996 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
266265fveq2d 6337 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / 1)) = (ψ‘𝑥))
267266, 265oveq12d 6812 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / 1)) + (𝑥 / 1)) = ((ψ‘𝑥) + 𝑥))
268267oveq2d 6810 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1))) = (1 · ((ψ‘𝑥) + 𝑥)))
2695, 3readdcld 10272 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + 𝑥) ∈ ℝ)
270269recnd 10271 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + 𝑥) ∈ ℂ)
271270mulid2d 10261 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘𝑥) + 𝑥)) = ((ψ‘𝑥) + 𝑥))
272268, 271eqtrd 2805 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1))) = ((ψ‘𝑥) + 𝑥))
273264, 272oveq12d 6812 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) = (𝑥 − ((ψ‘𝑥) + 𝑥)))
274270, 18negsubdi2d 10611 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → -(((ψ‘𝑥) + 𝑥) − 𝑥) = (𝑥 − ((ψ‘𝑥) + 𝑥)))
2756, 18pncand 10596 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + 𝑥) − 𝑥) = (ψ‘𝑥))
276275negeqd 10478 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → -(((ψ‘𝑥) + 𝑥) − 𝑥) = -(ψ‘𝑥))
277273, 274, 2763eqtr2d 2811 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) = -(ψ‘𝑥))
2783flcld 12808 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℤ)
279 fzval3 12746 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
280278, 279syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
281280eqcomd 2777 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
282112, 113pncan2d 10597 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 𝑛) = 1)
283282oveq1d 6809 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
28415recnd 10271 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
285284mulid2d 10261 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
286283, 285eqtrd 2805 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
287281, 286sumeq12rdv 14647 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
288277, 287oveq12d 6812 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
289 oveq2 6802 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑥 / 𝑚) = (𝑥 / 𝑛))
290289fveq2d 6337 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 𝑛)))
291290, 289oveq12d 6812 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))
292291ancli 532 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 = 𝑛 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))))
293 oveq2 6802 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 + 1) → (𝑥 / 𝑚) = (𝑥 / (𝑛 + 1)))
294293fveq2d 6337 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / (𝑛 + 1))))
295294, 293oveq12d 6812 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
296295ancli 532 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑚 = (𝑛 + 1) ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
297 oveq2 6802 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (𝑥 / 𝑚) = (𝑥 / 1))
298297fveq2d 6337 . . . . . . . . . . . . . 14 (𝑚 = 1 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 1)))
299298, 297oveq12d 6812 . . . . . . . . . . . . 13 (𝑚 = 1 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))
300299ancli 532 . . . . . . . . . . . 12 (𝑚 = 1 → (𝑚 = 1 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1))))
301 oveq2 6802 . . . . . . . . . . . . . . 15 (𝑚 = ((⌊‘𝑥) + 1) → (𝑥 / 𝑚) = (𝑥 / ((⌊‘𝑥) + 1)))
302301fveq2d 6337 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / ((⌊‘𝑥) + 1))))
303302, 301oveq12d 6812 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))))
304303ancli 532 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → (𝑚 = ((⌊‘𝑥) + 1) ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))))
305 nnuz 11926 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
306239, 305syl6eleq 2860 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
307 elfznn 12578 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
308307adantl 467 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
309308nncnd 11239 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℂ)
3103adantr 466 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑥 ∈ ℝ)
311310, 308nndivred 11272 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑥 / 𝑚) ∈ ℝ)
312 chpcl 25072 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
313311, 312syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
314313, 311readdcld 10272 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℝ)
315314recnd 10271 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℂ)
316292, 296, 300, 304, 306, 309, 315fsumparts 14746 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
317212, 213addcld 10262 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) ∈ ℂ)
318211, 118addcld 10262 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
319317, 318negsubdi2d 10611 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))))
320319oveq2d 6810 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))))
321112, 232mulneg2d 10687 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
322320, 321eqtr3d 2807 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
323281, 322sumeq12rdv 14647 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
324316, 323eqtr3d 2807 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
325235, 288, 3243eqtr2d 2811 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
3267, 233fsumneg 14727 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
327325, 326eqtr2d 2806 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → -Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
328234, 197, 327neg11d 10607 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
329231, 328breqtrd 4813 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
330188, 174, 35, 329lediv1dd 12134 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))
331175leabsd 14362 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
332189, 175, 199, 330, 331letrd 10397 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
333196, 332eqbrtrd 4809 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
334333adantrr 690 . 2 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
3351, 173, 175, 190, 334o1le 14592 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wss 3724   class class class wbr 4787  cmpt 4864  cfv 6032  (class class class)co 6794  cc 10137  cr 10138  0cc0 10139  1c1 10140   + caddc 10142   · cmul 10144  +∞cpnf 10274   < clt 10277  cle 10278  cmin 10469  -cneg 10470   / cdiv 10887  cn 11223  2c2 11273  0cn0 11495  cz 11580  cuz 11889  +crp 12036  (,)cioo 12381  ...cfz 12534  ..^cfzo 12674  cfl 12800  abscabs 14183  𝑟 crli 14425  𝑂(1)co1 14426  Σcsu 14625  logclog 24523  Λcvma 25040  ψcchp 25041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217  ax-addf 10218  ax-mulf 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-isom 6041  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-of 7045  df-om 7214  df-1st 7316  df-2nd 7317  df-supp 7448  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-2o 7715  df-oadd 7718  df-er 7897  df-map 8012  df-pm 8013  df-ixp 8064  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8966  df-cda 9193  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-4 11284  df-5 11285  df-6 11286  df-7 11287  df-8 11288  df-9 11289  df-n0 11496  df-xnn0 11567  df-z 11581  df-dec 11697  df-uz 11890  df-q 11993  df-rp 12037  df-xneg 12152  df-xadd 12153  df-xmul 12154  df-ioo 12385  df-ioc 12386  df-ico 12387  df-icc 12388  df-fz 12535  df-fzo 12675  df-fl 12802  df-mod 12878  df-seq 13010  df-exp 13069  df-fac 13266  df-bc 13295  df-hash 13323  df-shft 14016  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-limsup 14411  df-clim 14428  df-rlim 14429  df-o1 14430  df-lo1 14431  df-sum 14626  df-ef 15005  df-e 15006  df-sin 15007  df-cos 15008  df-pi 15010  df-dvds 15191  df-gcd 15426  df-prm 15594  df-pc 15750  df-struct 16067  df-ndx 16068  df-slot 16069  df-base 16071  df-sets 16072  df-ress 16073  df-plusg 16163  df-mulr 16164  df-starv 16165  df-sca 16166  df-vsca 16167  df-ip 16168  df-tset 16169  df-ple 16170  df-ds 16173  df-unif 16174  df-hom 16175  df-cco 16176  df-rest 16292  df-topn 16293  df-0g 16311  df-gsum 16312  df-topgen 16313  df-pt 16314  df-prds 16317  df-xrs 16371  df-qtop 16376  df-imas 16377  df-xps 16379  df-mre 16455  df-mrc 16456  df-acs 16458  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-submnd 17545  df-mulg 17750  df-cntz 17958  df-cmn 18403  df-psmet 19954  df-xmet 19955  df-met 19956  df-bl 19957  df-mopn 19958  df-fbas 19959  df-fg 19960  df-cnfld 19963  df-top 20920  df-topon 20937  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23851  df-dv 23852  df-log 24525  df-cxp 24526  df-em 24941  df-cht 25045  df-vma 25046  df-chp 25047  df-ppi 25048
This theorem is referenced by:  pntrlog2bndlem3  25490
  Copyright terms: Public domain W3C validator