MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem2 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem2 26431
Description: Lemma for pntrlog2bnd 26437. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bndlem2.1 (𝜑𝐴 ∈ ℝ+)
pntrlog2bndlem2.2 (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
Assertion
Ref Expression
pntrlog2bndlem2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦,𝐴   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)

Proof of Theorem pntrlog2bndlem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 1red 10817 . 2 (𝜑 → 1 ∈ ℝ)
2 elioore 12948 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
32adantl 485 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
4 chpcl 25978 . . . . . . 7 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
53, 4syl 17 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℝ)
65recnd 10844 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℂ)
7 fzfid 13529 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
83adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
9 elfznn 13124 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109adantl 485 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
1110peano2nnd 11830 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℕ)
128, 11nndivred 11867 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ)
13 chpcl 25978 . . . . . . . . 9 ((𝑥 / (𝑛 + 1)) ∈ ℝ → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
1412, 13syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
1514, 12readdcld 10845 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ)
167, 15fsumrecl 15281 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ)
1716recnd 10844 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
183recnd 10844 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
19 eliooord 12977 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
2019adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
2120simpld 498 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
223, 21rplogcld 25489 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2322rpcnd 12613 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2418, 23mulcld 10836 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
25 1rp 12573 . . . . . . . . 9 1 ∈ ℝ+
2625a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
27 1red 10817 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
2827, 3, 21ltled 10963 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
293, 26, 28rpgecld 12650 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
3029rpne0d 12616 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
3122rpne0d 12616 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
3218, 23, 30, 31mulne0d 11467 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
336, 17, 24, 32divdird 11629 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))))
3433mpteq2dva 5139 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))))
3529, 22rpmulcld 12627 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
365, 35rerpdivcld 12642 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / (𝑥 · (log‘𝑥))) ∈ ℝ)
3716, 35rerpdivcld 12642 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
386, 18, 23, 30, 31divdiv1d 11622 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = ((ψ‘𝑥) / (𝑥 · (log‘𝑥))))
395, 29rerpdivcld 12642 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4039recnd 10844 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4140, 23, 31divrecd 11594 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥))))
4238, 41eqtr3d 2776 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥))))
4342mpteq2dva 5139 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))))
4422rprecred 12622 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
4529ex 416 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
4645ssrdv 3897 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ+)
47 chpo1ub 26333 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
4847a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
4946, 48o1res2 15107 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
50 divlogrlim 25495 . . . . . . 7 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
51 rlimo1 15161 . . . . . . 7 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5250, 51mp1i 13 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
5339, 44, 49, 52o1mul2 15169 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
5443, 53eqeltrd 2834 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
55 pntrlog2bndlem2.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
5655rpred 12611 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5756, 1readdcld 10845 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℝ)
5857adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈ ℝ)
5927, 44readdcld 10845 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) ∈ ℝ)
60 ioossre 12979 . . . . . . 7 (1(,)+∞) ⊆ ℝ
6157recnd 10844 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℂ)
62 o1const 15164 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ (𝐴 + 1) ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 + 1)) ∈ 𝑂(1))
6360, 61, 62sylancr 590 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 + 1)) ∈ 𝑂(1))
64 1cnd 10811 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
65 o1const 15164 . . . . . . . 8 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
6660, 64, 65sylancr 590 . . . . . . 7 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
6727, 44, 66, 52o1add2 15168 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 / (log‘𝑥)))) ∈ 𝑂(1))
6858, 59, 63, 67o1mul2 15169 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) ∈ 𝑂(1))
6958, 59remulcld 10846 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ∈ ℝ)
7037recnd 10844 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
71 chpge0 25980 . . . . . . . . . . . 12 ((𝑥 / (𝑛 + 1)) ∈ ℝ → 0 ≤ (ψ‘(𝑥 / (𝑛 + 1))))
7212, 71syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (ψ‘(𝑥 / (𝑛 + 1))))
7310nnrpd 12609 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
7425a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
7573, 74rpaddcld 12626 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℝ+)
7629adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
7776rpge0d 12615 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 𝑥)
788, 75, 77divge0d 12651 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / (𝑛 + 1)))
7914, 12, 72, 78addge0d 11391 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
807, 15, 79fsumge0 15340 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
8116, 35, 80divge0d 12651 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
8237, 81absidd 14969 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
8369recnd 10844 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ∈ ℂ)
8483abscld 14983 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) ∈ ℝ)
8516, 29rerpdivcld 12642 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ∈ ℝ)
8629relogcld 25483 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
8786, 27readdcld 10845 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℝ)
8858, 87remulcld 10846 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · ((log‘𝑥) + 1)) ∈ ℝ)
8958, 3remulcld 10846 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈ ℝ)
9010nnrecred 11864 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
917, 90fsumrecl 15281 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
9289, 91remulcld 10846 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) ∈ ℝ)
9389, 87remulcld 10846 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) ∈ ℝ)
9456ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
95 1red 10817 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
9694, 95readdcld 10845 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 + 1) ∈ ℝ)
9796, 8remulcld 10846 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · 𝑥) ∈ ℝ)
9897, 90remulcld 10846 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) · (1 / 𝑛)) ∈ ℝ)
9997, 11nndivred 11867 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) ∈ ℝ)
10097, 10nndivred 11867 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / 𝑛) ∈ ℝ)
10194, 12remulcld 10846 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · (𝑥 / (𝑛 + 1))) ∈ ℝ)
102 fveq2 6706 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / (𝑛 + 1)) → (ψ‘𝑦) = (ψ‘(𝑥 / (𝑛 + 1))))
103 oveq2 7210 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / (𝑛 + 1)) → (𝐴 · 𝑦) = (𝐴 · (𝑥 / (𝑛 + 1))))
104102, 103breq12d 5056 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / (𝑛 + 1)) → ((ψ‘𝑦) ≤ (𝐴 · 𝑦) ↔ (ψ‘(𝑥 / (𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1)))))
105 pntrlog2bndlem2.2 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))
10776, 75rpdivcld 12628 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ+)
108104, 106, 107rspcdva 3532 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1))))
10914, 101, 12, 108leadd1dd 11429 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
11061ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 + 1) ∈ ℂ)
11118adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
11210nncnd 11829 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
113 1cnd 10811 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
114112, 113addcld 10835 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℂ)
11511nnne0d 11863 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ≠ 0)
116110, 111, 114, 115divassd 11626 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) = ((𝐴 + 1) · (𝑥 / (𝑛 + 1))))
11794recnd 10844 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℂ)
118111, 114, 115divcld 11591 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℂ)
119117, 113, 118adddird 10841 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · (𝑥 / (𝑛 + 1))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1)))))
120118mulid2d 10834 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · (𝑥 / (𝑛 + 1))) = (𝑥 / (𝑛 + 1)))
121120oveq2d 7218 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1)))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
122116, 119, 1213eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
123109, 122breqtrrd 5071 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / (𝑛 + 1)))
12456adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
12555adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
126125rpge0d 12615 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐴)
12726rpge0d 12615 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 1)
128124, 27, 126, 127addge0d 11391 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐴 + 1))
12929rpge0d 12615 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
13058, 3, 128, 129mulge0d 11392 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ ((𝐴 + 1) · 𝑥))
131130adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((𝐴 + 1) · 𝑥))
13210nnred 11828 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
133132lep1d 11746 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≤ (𝑛 + 1))
13473, 75, 97, 131, 133lediv2ad 12633 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / (𝑛 + 1)) ≤ (((𝐴 + 1) · 𝑥) / 𝑛))
13515, 99, 100, 123, 134letrd 10972 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / 𝑛))
13697recnd 10844 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 + 1) · 𝑥) ∈ ℂ)
13710nnne0d 11863 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
138136, 112, 137divrecd 11594 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝐴 + 1) · 𝑥) / 𝑛) = (((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
139135, 138breqtrd 5069 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
1407, 15, 98, 139fsumle 15344 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
14189recnd 10844 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈ ℂ)
142112, 137reccld 11584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
1437, 141, 142fsummulc2 15329 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛)))
144140, 143breqtrrd 5071 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)))
145 harmonicubnd 25864 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
1463, 28, 145syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
14791, 87, 89, 130, 146lemul2ad 11755 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)))
14816, 92, 93, 144, 147letrd 10972 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)))
14961adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈ ℂ)
15087recnd 10844 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
151149, 18, 150mul32d 11025 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) = (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥))
152148, 151breqtrd 5069 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥))
15316, 88, 29ledivmul2d 12665 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1)) ↔ Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥)))
154152, 153mpbird 260 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1)))
15585, 88, 22, 154lediv1dd 12669 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)))
15617, 18, 23, 30, 31divdiv1d 11622 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))
157 1cnd 10811 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
15823, 157addcld 10835 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) + 1) ∈ ℂ)
159149, 158, 23, 31divassd 11626 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (((log‘𝑥) + 1) / (log‘𝑥))))
16023, 157, 23, 31divdird 11629 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) + 1) / (log‘𝑥)) = (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))))
16123, 31dividd 11589 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
162161oveq1d 7217 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (((log‘𝑥) / (log‘𝑥)) + (1 / (log‘𝑥))) = (1 + (1 / (log‘𝑥))))
163160, 162eqtr2d 2775 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 + (1 / (log‘𝑥))) = (((log‘𝑥) + 1) / (log‘𝑥)))
164163oveq2d 7218 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) = ((𝐴 + 1) · (((log‘𝑥) + 1) / (log‘𝑥))))
165159, 164eqtr4d 2777 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))
166155, 156, 1653brtr3d 5074 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))
16769leabsd 14961 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 / (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
16837, 69, 84, 166, 167letrd 10972 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
16982, 168eqbrtrd 5065 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
170169adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥))))))
1711, 68, 69, 70, 170o1le 15199 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
17236, 37, 54, 171o1add2 15168 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1))
17334, 172eqeltrd 2834 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
1745, 16readdcld 10845 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ)
175174, 35rerpdivcld 12642 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
176 pntrlog2bnd.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
177176pntrf 26416 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
178177ffvelrni 6892 . . . . . . . . . 10 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
179107, 178syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
180179recnd 10844 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
18176, 73rpdivcld 12628 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
182177ffvelrni 6892 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
183181, 182syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
184183recnd 10844 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
185180, 184subcld 11172 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
186185abscld 14983 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
187132, 186remulcld 10846 . . . . 5 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
1887, 187fsumrecl 15281 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
189188, 35rerpdivcld 12642 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
190189recnd 10844 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
19173rpge0d 12615 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 𝑛)
192185absge0d 14991 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))
193132, 186, 191, 192mulge0d 11392 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))))
1947, 187, 193fsumge0 15340 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))))
195188, 35, 194divge0d 12651 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))
196189, 195absidd 14969 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))
1976, 17addcld 10835 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ)
198197, 24, 32divcld 11591 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
199198abscld 14983 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
2008, 10nndivred 11867 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
201 chpcl 25978 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
202200, 201syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
203202, 200readdcld 10845 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) ∈ ℝ)
204203, 15resubcld 11243 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ)
205132, 204remulcld 10846 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℝ)
206176pntrval 26415 . . . . . . . . . . . . . . 15 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))))
207107, 206syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))))
208176pntrval 26415 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))
209181, 208syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))
210207, 209oveq12d 7220 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))))
21114recnd 10844 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
212202recnd 10844 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
213111, 112, 137divcld 11591 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
214211, 118, 212, 213sub4d 11221 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))
215210, 214eqtrd 2774 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))
216215fveq2d 6710 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) = (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
217211, 212subcld 11172 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
218118, 213subcld 11172 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)) ∈ ℂ)
219217, 218abs2dif2d 15005 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
220216, 219eqbrtrd 5065 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))))
22173, 75, 8, 77, 133lediv2ad 12633 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛))
222 chpwordi 26011 . . . . . . . . . . . . . 14 (((𝑥 / (𝑛 + 1)) ∈ ℝ ∧ (𝑥 / 𝑛) ∈ ℝ ∧ (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛)) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (ψ‘(𝑥 / 𝑛)))
22312, 200, 221, 222syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (ψ‘(𝑥 / 𝑛)))
22414, 202, 223abssuble0d 14979 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) = ((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))))
22512, 200, 221abssuble0d 14979 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))) = ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1))))
226224, 225oveq12d 7220 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1)))))
227212, 213, 211, 118addsub4d 11219 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1)))))
228226, 227eqtr4d 2777 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
229220, 228breqtrd 5069 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
230186, 204, 132, 191, 229lemul2ad 11755 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
2317, 187, 205, 230fsumle 15344 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
232204recnd 10844 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ)
233112, 232mulcld 10836 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ)
2347, 233fsumcl 15280 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ)
2356, 17negdi2d 11186 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
23629rprege0d 12618 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
237 flge0nn0 13378 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
238 nn0p1nn 12112 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
239236, 237, 2383syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℕ)
2403, 239nndivred 11867 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ)
241 2re 11887 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
242241a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
243 flltp1 13358 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → 𝑥 < ((⌊‘𝑥) + 1))
2443, 243syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 < ((⌊‘𝑥) + 1))
245239nncnd 11829 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℂ)
246245mulid1d 10833 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · 1) = ((⌊‘𝑥) + 1))
247244, 246breqtrrd 5071 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 < (((⌊‘𝑥) + 1) · 1))
248239nnrpd 12609 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℝ+)
2493, 27, 248ltdivmuld 12662 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) < 1 ↔ 𝑥 < (((⌊‘𝑥) + 1) · 1)))
250247, 249mpbird 260 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 1)
251 1lt2 11984 . . . . . . . . . . . . . . . . . . . 20 1 < 2
252251a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 2)
253240, 27, 242, 250, 252lttrd 10976 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 2)
254 chpeq0 26061 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
255240, 254syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
256253, 255mpbird 260 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0)
257256oveq1d 7217 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))) = (0 + (𝑥 / ((⌊‘𝑥) + 1))))
258240recnd 10844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℂ)
259258addid2d 11016 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → (0 + (𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1)))
260257, 259eqtrd 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1)))
261260oveq2d 7218 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) = (((⌊‘𝑥) + 1) · (𝑥 / ((⌊‘𝑥) + 1))))
262239nnne0d 11863 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ≠ 0)
26318, 245, 262divcan2d 11593 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · (𝑥 / ((⌊‘𝑥) + 1))) = 𝑥)
264261, 263eqtrd 2774 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) = 𝑥)
26518div1d 11583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
266265fveq2d 6710 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / 1)) = (ψ‘𝑥))
267266, 265oveq12d 7220 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / 1)) + (𝑥 / 1)) = ((ψ‘𝑥) + 𝑥))
268267oveq2d 7218 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1))) = (1 · ((ψ‘𝑥) + 𝑥)))
2695, 3readdcld 10845 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + 𝑥) ∈ ℝ)
270269recnd 10844 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) + 𝑥) ∈ ℂ)
271270mulid2d 10834 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘𝑥) + 𝑥)) = ((ψ‘𝑥) + 𝑥))
272268, 271eqtrd 2774 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1))) = ((ψ‘𝑥) + 𝑥))
273264, 272oveq12d 7220 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) = (𝑥 − ((ψ‘𝑥) + 𝑥)))
274270, 18negsubdi2d 11188 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → -(((ψ‘𝑥) + 𝑥) − 𝑥) = (𝑥 − ((ψ‘𝑥) + 𝑥)))
2756, 18pncand 11173 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + 𝑥) − 𝑥) = (ψ‘𝑥))
276275negeqd 11055 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → -(((ψ‘𝑥) + 𝑥) − 𝑥) = -(ψ‘𝑥))
277273, 274, 2763eqtr2d 2780 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) = -(ψ‘𝑥))
2783flcld 13356 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℤ)
279 fzval3 13294 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
280278, 279syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
281280eqcomd 2740 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
282112, 113pncan2d 11174 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 𝑛) = 1)
283282oveq1d 7217 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
28415recnd 10844 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
285284mulid2d 10834 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
286283, 285eqtrd 2774 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
287281, 286sumeq12rdv 15254 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
288277, 287oveq12d 7220 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
289 oveq2 7210 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑥 / 𝑚) = (𝑥 / 𝑛))
290289fveq2d 6710 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 𝑛)))
291290, 289oveq12d 7220 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))
292291ancli 552 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 = 𝑛 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))))
293 oveq2 7210 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 + 1) → (𝑥 / 𝑚) = (𝑥 / (𝑛 + 1)))
294293fveq2d 6710 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / (𝑛 + 1))))
295294, 293oveq12d 7220 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))
296295ancli 552 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝑚 = (𝑛 + 1) ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
297 oveq2 7210 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (𝑥 / 𝑚) = (𝑥 / 1))
298297fveq2d 6710 . . . . . . . . . . . . . 14 (𝑚 = 1 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 1)))
299298, 297oveq12d 7220 . . . . . . . . . . . . 13 (𝑚 = 1 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))
300299ancli 552 . . . . . . . . . . . 12 (𝑚 = 1 → (𝑚 = 1 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1))))
301 oveq2 7210 . . . . . . . . . . . . . . 15 (𝑚 = ((⌊‘𝑥) + 1) → (𝑥 / 𝑚) = (𝑥 / ((⌊‘𝑥) + 1)))
302301fveq2d 6710 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / ((⌊‘𝑥) + 1))))
303302, 301oveq12d 7220 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))))
304303ancli 552 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → (𝑚 = ((⌊‘𝑥) + 1) ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))))
305 nnuz 12460 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
306239, 305eleqtrdi 2844 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
307 elfznn 13124 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
308307adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
309308nncnd 11829 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℂ)
3103adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑥 ∈ ℝ)
311310, 308nndivred 11867 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑥 / 𝑚) ∈ ℝ)
312 chpcl 25978 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
313311, 312syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
314313, 311readdcld 10845 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℝ)
315314recnd 10844 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℂ)
316292, 296, 300, 304, 306, 309, 315fsumparts 15351 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
317212, 213addcld 10835 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) ∈ ℂ)
318211, 118addcld 10835 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ)
319317, 318negsubdi2d 11188 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))))
320319oveq2d 7218 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))))
321112, 232mulneg2d 11269 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · -(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
322320, 321eqtr3d 2776 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
323281, 322sumeq12rdv 15254 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
324316, 323eqtr3d 2776 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 · ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
325235, 288, 3243eqtr2d 2780 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
3267, 233fsumneg 15332 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))))
327325, 326eqtr2d 2775 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → -Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
328234, 197, 327neg11d 11184 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
329231, 328breqtrd 5069 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))
330188, 174, 35, 329lediv1dd 12669 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))
331175leabsd 14961 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
332189, 175, 199, 330, 331letrd 10972 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
333196, 332eqbrtrd 5065 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
334333adantrr 717 . 2 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))))
3351, 173, 175, 190, 334o1le 15199 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3054  wss 3857   class class class wbr 5043  cmpt 5124  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717  +∞cpnf 10847   < clt 10850  cle 10851  cmin 11045  -cneg 11046   / cdiv 11472  cn 11813  2c2 11868  0cn0 12073  cz 12159  cuz 12421  +crp 12569  (,)cioo 12918  ...cfz 13078  ..^cfzo 13221  cfl 13348  abscabs 14780  𝑟 crli 15029  𝑂(1)co1 15030  Σcsu 15232  logclog 25415  Λcvma 25946  ψcchp 25947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-xnn0 12146  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-shft 14613  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-o1 15034  df-lo1 15035  df-sum 15233  df-ef 15610  df-e 15611  df-sin 15612  df-cos 15613  df-pi 15615  df-dvds 15797  df-gcd 16035  df-prm 16210  df-pc 16371  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-cn 22096  df-cnp 22097  df-haus 22184  df-tx 22431  df-hmeo 22624  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747  df-limc 24735  df-dv 24736  df-log 25417  df-cxp 25418  df-em 25847  df-cht 25951  df-vma 25952  df-chp 25953  df-ppi 25954
This theorem is referenced by:  pntrlog2bndlem3  26432
  Copyright terms: Public domain W3C validator