| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 1red 11262 | . 2
⊢ (𝜑 → 1 ∈
ℝ) | 
| 2 |  | elioore 13417 | . . . . . . . 8
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) | 
| 3 | 2 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ) | 
| 4 |  | chpcl 27167 | . . . . . . 7
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) | 
| 5 | 3, 4 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(ψ‘𝑥) ∈
ℝ) | 
| 6 | 5 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(ψ‘𝑥) ∈
ℂ) | 
| 7 |  | fzfid 14014 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥))
∈ Fin) | 
| 8 | 3 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) | 
| 9 |  | elfznn 13593 | . . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) | 
| 10 | 9 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) | 
| 11 | 10 | peano2nnd 12283 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 + 1) ∈
ℕ) | 
| 12 | 8, 11 | nndivred 12320 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / (𝑛 + 1)) ∈
ℝ) | 
| 13 |  | chpcl 27167 | . . . . . . . . 9
⊢ ((𝑥 / (𝑛 + 1)) ∈ ℝ →
(ψ‘(𝑥 / (𝑛 + 1))) ∈
ℝ) | 
| 14 | 12, 13 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
(𝑛 + 1))) ∈
ℝ) | 
| 15 | 14, 12 | readdcld 11290 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ) | 
| 16 | 7, 15 | fsumrecl 15770 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ) | 
| 17 | 16 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ) | 
| 18 | 3 | recnd 11289 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℂ) | 
| 19 |  | eliooord 13446 | . . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) | 
| 20 | 19 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) | 
| 21 | 20 | simpld 494 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) | 
| 22 | 3, 21 | rplogcld 26671 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ+) | 
| 23 | 22 | rpcnd 13079 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℂ) | 
| 24 | 18, 23 | mulcld 11281 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈
ℂ) | 
| 25 |  | 1rp 13038 | . . . . . . . . 9
⊢ 1 ∈
ℝ+ | 
| 26 | 25 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ+) | 
| 27 |  | 1red 11262 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ) | 
| 28 | 27, 3, 21 | ltled 11409 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) | 
| 29 | 3, 26, 28 | rpgecld 13116 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ+) | 
| 30 | 29 | rpne0d 13082 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0) | 
| 31 | 22 | rpne0d 13082 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ≠
0) | 
| 32 | 18, 23, 30, 31 | mulne0d 11915 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0) | 
| 33 | 6, 17, 24, 32 | divdird 12081 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))) | 
| 34 | 33 | mpteq2dva 5242 | . . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))))) | 
| 35 | 29, 22 | rpmulcld 13093 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈
ℝ+) | 
| 36 | 5, 35 | rerpdivcld 13108 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) / (𝑥 · (log‘𝑥))) ∈
ℝ) | 
| 37 | 16, 35 | rerpdivcld 13108 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℝ) | 
| 38 | 6, 18, 23, 30, 31 | divdiv1d 12074 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = ((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) | 
| 39 | 5, 29 | rerpdivcld 13108 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) / 𝑥) ∈
ℝ) | 
| 40 | 39 | recnd 11289 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) / 𝑥) ∈
ℂ) | 
| 41 | 40, 23, 31 | divrecd 12046 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) | 
| 42 | 38, 41 | eqtr3d 2779 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) | 
| 43 | 42 | mpteq2dva 5242 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥))))) | 
| 44 | 22 | rprecred 13088 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 /
(log‘𝑥)) ∈
ℝ) | 
| 45 | 29 | ex 412 | . . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈
ℝ+)) | 
| 46 | 45 | ssrdv 3989 | . . . . . . 7
⊢ (𝜑 → (1(,)+∞) ⊆
ℝ+) | 
| 47 |  | chpo1ub 27524 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ+
↦ ((ψ‘𝑥) /
𝑥)) ∈
𝑂(1) | 
| 48 | 47 | a1i 11 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((ψ‘𝑥) / 𝑥)) ∈
𝑂(1)) | 
| 49 | 46, 48 | o1res2 15599 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((ψ‘𝑥) / 𝑥)) ∈
𝑂(1)) | 
| 50 |  | divlogrlim 26677 | . . . . . . 7
⊢ (𝑥 ∈ (1(,)+∞) ↦
(1 / (log‘𝑥)))
⇝𝑟 0 | 
| 51 |  | rlimo1 15653 | . . . . . . 7
⊢ ((𝑥 ∈ (1(,)+∞) ↦
(1 / (log‘𝑥)))
⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 /
(log‘𝑥))) ∈
𝑂(1)) | 
| 52 | 50, 51 | mp1i 13 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 /
(log‘𝑥))) ∈
𝑂(1)) | 
| 53 | 39, 44, 49, 52 | o1mul2 15661 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) ∈
𝑂(1)) | 
| 54 | 43, 53 | eqeltrd 2841 | . . . 4
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) ∈
𝑂(1)) | 
| 55 |  | pntrlog2bndlem2.1 | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) | 
| 56 | 55 | rpred 13077 | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 57 | 56, 1 | readdcld 11290 | . . . . . . 7
⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) | 
| 58 | 57 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈
ℝ) | 
| 59 | 27, 44 | readdcld 11290 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 + (1 /
(log‘𝑥))) ∈
ℝ) | 
| 60 |  | ioossre 13448 | . . . . . . 7
⊢
(1(,)+∞) ⊆ ℝ | 
| 61 | 57 | recnd 11289 | . . . . . . 7
⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) | 
| 62 |  | o1const 15656 | . . . . . . 7
⊢
(((1(,)+∞) ⊆ ℝ ∧ (𝐴 + 1) ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦
(𝐴 + 1)) ∈
𝑂(1)) | 
| 63 | 60, 61, 62 | sylancr 587 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 + 1)) ∈
𝑂(1)) | 
| 64 |  | 1cnd 11256 | . . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) | 
| 65 |  | o1const 15656 | . . . . . . . 8
⊢
(((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦
1) ∈ 𝑂(1)) | 
| 66 | 60, 64, 65 | sylancr 587 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈
𝑂(1)) | 
| 67 | 27, 44, 66, 52 | o1add2 15660 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 /
(log‘𝑥)))) ∈
𝑂(1)) | 
| 68 | 58, 59, 63, 67 | o1mul2 15661 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((𝐴 + 1) · (1 + (1 /
(log‘𝑥))))) ∈
𝑂(1)) | 
| 69 | 58, 59 | remulcld 11291 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 /
(log‘𝑥)))) ∈
ℝ) | 
| 70 | 37 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℂ) | 
| 71 |  | chpge0 27169 | . . . . . . . . . . . 12
⊢ ((𝑥 / (𝑛 + 1)) ∈ ℝ → 0 ≤
(ψ‘(𝑥 / (𝑛 + 1)))) | 
| 72 | 12, 71 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (ψ‘(𝑥 / (𝑛 + 1)))) | 
| 73 | 10 | nnrpd 13075 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) | 
| 74 | 25 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ+) | 
| 75 | 73, 74 | rpaddcld 13092 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 + 1) ∈
ℝ+) | 
| 76 | 29 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) | 
| 77 | 76 | rpge0d 13081 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ 𝑥) | 
| 78 | 8, 75, 77 | divge0d 13117 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (𝑥 / (𝑛 + 1))) | 
| 79 | 14, 12, 72, 78 | addge0d 11839 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 80 | 7, 15, 79 | fsumge0 15831 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 81 | 16, 35, 80 | divge0d 13117 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
(Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) | 
| 82 | 37, 81 | absidd 15461 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) | 
| 83 | 69 | recnd 11289 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 /
(log‘𝑥)))) ∈
ℂ) | 
| 84 | 83 | abscld 15475 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘((𝐴 + 1)
· (1 + (1 / (log‘𝑥))))) ∈ ℝ) | 
| 85 | 16, 29 | rerpdivcld 13108 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ∈ ℝ) | 
| 86 | 29 | relogcld 26665 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ) | 
| 87 | 86, 27 | readdcld 11290 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℝ) | 
| 88 | 58, 87 | remulcld 11291 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · ((log‘𝑥) + 1)) ∈
ℝ) | 
| 89 | 58, 3 | remulcld 11291 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈
ℝ) | 
| 90 | 10 | nnrecred 12317 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℝ) | 
| 91 | 7, 90 | fsumrecl 15770 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ∈
ℝ) | 
| 92 | 89, 91 | remulcld 11291 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛)) ∈
ℝ) | 
| 93 | 89, 87 | remulcld 11291 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) ∈
ℝ) | 
| 94 | 56 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐴 ∈
ℝ) | 
| 95 |  | 1red 11262 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) | 
| 96 | 94, 95 | readdcld 11290 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐴 + 1) ∈
ℝ) | 
| 97 | 96, 8 | remulcld 11291 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 + 1) ·
𝑥) ∈
ℝ) | 
| 98 | 97, 90 | remulcld 11291 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) · (1 / 𝑛)) ∈
ℝ) | 
| 99 | 97, 11 | nndivred 12320 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / (𝑛 + 1)) ∈ ℝ) | 
| 100 | 97, 10 | nndivred 12320 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / 𝑛) ∈ ℝ) | 
| 101 | 94, 12 | remulcld 11291 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐴 · (𝑥 / (𝑛 + 1))) ∈ ℝ) | 
| 102 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑥 / (𝑛 + 1)) → (ψ‘𝑦) = (ψ‘(𝑥 / (𝑛 + 1)))) | 
| 103 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑥 / (𝑛 + 1)) → (𝐴 · 𝑦) = (𝐴 · (𝑥 / (𝑛 + 1)))) | 
| 104 | 102, 103 | breq12d 5156 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑥 / (𝑛 + 1)) → ((ψ‘𝑦) ≤ (𝐴 · 𝑦) ↔ (ψ‘(𝑥 / (𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1))))) | 
| 105 |  | pntrlog2bndlem2.2 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑦 ∈ ℝ+
(ψ‘𝑦) ≤ (𝐴 · 𝑦)) | 
| 106 | 105 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ∀𝑦 ∈
ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦)) | 
| 107 | 76, 75 | rpdivcld 13094 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / (𝑛 + 1)) ∈
ℝ+) | 
| 108 | 104, 106,
107 | rspcdva 3623 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
(𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1)))) | 
| 109 | 14, 101, 12, 108 | leadd1dd 11877 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 110 | 61 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐴 + 1) ∈
ℂ) | 
| 111 | 18 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) | 
| 112 | 10 | nncnd 12282 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℂ) | 
| 113 |  | 1cnd 11256 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℂ) | 
| 114 | 112, 113 | addcld 11280 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 + 1) ∈
ℂ) | 
| 115 | 11 | nnne0d 12316 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 + 1) ≠
0) | 
| 116 | 110, 111,
114, 115 | divassd 12078 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / (𝑛 + 1)) = ((𝐴 + 1) · (𝑥 / (𝑛 + 1)))) | 
| 117 | 94 | recnd 11289 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐴 ∈
ℂ) | 
| 118 | 111, 114,
115 | divcld 12043 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / (𝑛 + 1)) ∈
ℂ) | 
| 119 | 117, 113,
118 | adddird 11286 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 + 1) ·
(𝑥 / (𝑛 + 1))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1))))) | 
| 120 | 118 | mullidd 11279 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · (𝑥 /
(𝑛 + 1))) = (𝑥 / (𝑛 + 1))) | 
| 121 | 120 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1)))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 122 | 116, 119,
121 | 3eqtrd 2781 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / (𝑛 + 1)) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 123 | 109, 122 | breqtrrd 5171 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / (𝑛 + 1))) | 
| 124 | 56 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈
ℝ) | 
| 125 | 55 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈
ℝ+) | 
| 126 | 125 | rpge0d 13081 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐴) | 
| 127 | 26 | rpge0d 13081 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
1) | 
| 128 | 124, 27, 126, 127 | addge0d 11839 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐴 + 1)) | 
| 129 | 29 | rpge0d 13081 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) | 
| 130 | 58, 3, 128, 129 | mulge0d 11840 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ ((𝐴 + 1) · 𝑥)) | 
| 131 | 130 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((𝐴 + 1)
· 𝑥)) | 
| 132 | 10 | nnred 12281 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ) | 
| 133 | 132 | lep1d 12199 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≤ (𝑛 + 1)) | 
| 134 | 73, 75, 97, 131, 133 | lediv2ad 13099 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / (𝑛 + 1)) ≤ (((𝐴 + 1) · 𝑥) / 𝑛)) | 
| 135 | 15, 99, 100, 123, 134 | letrd 11418 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / 𝑛)) | 
| 136 | 97 | recnd 11289 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 + 1) ·
𝑥) ∈
ℂ) | 
| 137 | 10 | nnne0d 12316 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≠
0) | 
| 138 | 136, 112,
137 | divrecd 12046 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / 𝑛) = (((𝐴 + 1) · 𝑥) · (1 / 𝑛))) | 
| 139 | 135, 138 | breqtrd 5169 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · (1 / 𝑛))) | 
| 140 | 7, 15, 98, 139 | fsumle 15835 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛))) | 
| 141 | 89 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈
ℂ) | 
| 142 | 112, 137 | reccld 12036 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℂ) | 
| 143 | 7, 141, 142 | fsummulc2 15820 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛)) = Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛))) | 
| 144 | 140, 143 | breqtrrd 5171 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛))) | 
| 145 |  | harmonicubnd 27053 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) | 
| 146 | 3, 28, 145 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) | 
| 147 | 91, 87, 89, 130, 146 | lemul2ad 12208 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛)) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1))) | 
| 148 | 16, 92, 93, 144, 147 | letrd 11418 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1))) | 
| 149 | 61 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈
ℂ) | 
| 150 | 87 | recnd 11289 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℂ) | 
| 151 | 149, 18, 150 | mul32d 11471 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) = (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥)) | 
| 152 | 148, 151 | breqtrd 5169 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥)) | 
| 153 | 16, 88, 29 | ledivmul2d 13131 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1)) ↔ Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥))) | 
| 154 | 152, 153 | mpbird 257 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1))) | 
| 155 | 85, 88, 22, 154 | lediv1dd 13135 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥))) | 
| 156 | 17, 18, 23, 30, 31 | divdiv1d 12074 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) | 
| 157 |  | 1cnd 11256 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℂ) | 
| 158 | 23, 157 | addcld 11280 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℂ) | 
| 159 | 149, 158,
23, 31 | divassd 12078 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (((log‘𝑥) + 1) / (log‘𝑥)))) | 
| 160 | 23, 157, 23, 31 | divdird 12081 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) + 1) /
(log‘𝑥)) =
(((log‘𝑥) /
(log‘𝑥)) + (1 /
(log‘𝑥)))) | 
| 161 | 23, 31 | dividd 12041 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) /
(log‘𝑥)) =
1) | 
| 162 | 161 | oveq1d 7446 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) /
(log‘𝑥)) + (1 /
(log‘𝑥))) = (1 + (1 /
(log‘𝑥)))) | 
| 163 | 160, 162 | eqtr2d 2778 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 + (1 /
(log‘𝑥))) =
(((log‘𝑥) + 1) /
(log‘𝑥))) | 
| 164 | 163 | oveq2d 7447 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 /
(log‘𝑥)))) = ((𝐴 + 1) ·
(((log‘𝑥) + 1) /
(log‘𝑥)))) | 
| 165 | 159, 164 | eqtr4d 2780 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) | 
| 166 | 155, 156,
165 | 3brtr3d 5174 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ ((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) | 
| 167 | 69 | leabsd 15453 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 /
(log‘𝑥)))) ≤
(abs‘((𝐴 + 1)
· (1 + (1 / (log‘𝑥)))))) | 
| 168 | 37, 69, 84, 166, 167 | letrd 11418 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))) | 
| 169 | 82, 168 | eqbrtrd 5165 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))) | 
| 170 | 169 | adantrr 717 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))) | 
| 171 | 1, 68, 69, 70, 170 | o1le 15689 | . . . 4
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) | 
| 172 | 36, 37, 54, 171 | o1add2 15660 | . . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1)) | 
| 173 | 34, 172 | eqeltrd 2841 | . 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) | 
| 174 | 5, 16 | readdcld 11290 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ) | 
| 175 | 174, 35 | rerpdivcld 13108 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℝ) | 
| 176 |  | pntrlog2bnd.r | . . . . . . . . . . . 12
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) | 
| 177 | 176 | pntrf 27607 | . . . . . . . . . . 11
⊢ 𝑅:ℝ+⟶ℝ | 
| 178 | 177 | ffvelcdmi 7103 | . . . . . . . . . 10
⊢ ((𝑥 / (𝑛 + 1)) ∈ ℝ+ →
(𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ) | 
| 179 | 107, 178 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ) | 
| 180 | 179 | recnd 11289 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ) | 
| 181 | 76, 73 | rpdivcld 13094 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) | 
| 182 | 177 | ffvelcdmi 7103 | . . . . . . . . . 10
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) | 
| 183 | 181, 182 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) | 
| 184 | 183 | recnd 11289 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) | 
| 185 | 180, 184 | subcld 11620 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) ∈ ℂ) | 
| 186 | 185 | abscld 15475 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℝ) | 
| 187 | 132, 186 | remulcld 11291 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ) | 
| 188 | 7, 187 | fsumrecl 15770 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ) | 
| 189 | 188, 35 | rerpdivcld 13108 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ) | 
| 190 | 189 | recnd 11289 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℂ) | 
| 191 | 73 | rpge0d 13081 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ 𝑛) | 
| 192 | 185 | absge0d 15483 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) | 
| 193 | 132, 186,
191, 192 | mulge0d 11840 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (𝑛 ·
(abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) | 
| 194 | 7, 187, 193 | fsumge0 15831 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) | 
| 195 | 188, 35, 194 | divge0d 13117 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
(Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) | 
| 196 | 189, 195 | absidd 15461 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) | 
| 197 | 6, 17 | addcld 11280 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ) | 
| 198 | 197, 24, 32 | divcld 12043 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℂ) | 
| 199 | 198 | abscld 15475 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ ℝ) | 
| 200 | 8, 10 | nndivred 12320 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) | 
| 201 |  | chpcl 27167 | . . . . . . . . . . . 12
⊢ ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ) | 
| 202 | 200, 201 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑛)) ∈
ℝ) | 
| 203 | 202, 200 | readdcld 11290 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) ∈ ℝ) | 
| 204 | 203, 15 | resubcld 11691 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ) | 
| 205 | 132, 204 | remulcld 11291 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℝ) | 
| 206 | 176 | pntrval 27606 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 / (𝑛 + 1)) ∈ ℝ+ →
(𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1)))) | 
| 207 | 107, 206 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1)))) | 
| 208 | 176 | pntrval 27606 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) | 
| 209 | 181, 208 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) | 
| 210 | 207, 209 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))) | 
| 211 | 14 | recnd 11289 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
(𝑛 + 1))) ∈
ℂ) | 
| 212 | 202 | recnd 11289 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑛)) ∈
ℂ) | 
| 213 | 111, 112,
137 | divcld 12043 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℂ) | 
| 214 | 211, 118,
212, 213 | sub4d 11669 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((ψ‘(𝑥 /
(𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) | 
| 215 | 210, 214 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) | 
| 216 | 215 | fveq2d 6910 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) = (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))) | 
| 217 | 211, 212 | subcld 11620 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) −
(ψ‘(𝑥 / 𝑛))) ∈
ℂ) | 
| 218 | 118, 213 | subcld 11620 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)) ∈ ℂ) | 
| 219 | 217, 218 | abs2dif2d 15497 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))) | 
| 220 | 216, 219 | eqbrtrd 5165 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))) | 
| 221 | 73, 75, 8, 77, 133 | lediv2ad 13099 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛)) | 
| 222 |  | chpwordi 27200 | . . . . . . . . . . . . . 14
⊢ (((𝑥 / (𝑛 + 1)) ∈ ℝ ∧ (𝑥 / 𝑛) ∈ ℝ ∧ (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛)) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (ψ‘(𝑥 / 𝑛))) | 
| 223 | 12, 200, 221, 222 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
(𝑛 + 1))) ≤
(ψ‘(𝑥 / 𝑛))) | 
| 224 | 14, 202, 223 | abssuble0d 15471 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) = ((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1))))) | 
| 225 | 12, 200, 221 | abssuble0d 15471 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑥 /
(𝑛 + 1)) − (𝑥 / 𝑛))) = ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1)))) | 
| 226 | 224, 225 | oveq12d 7449 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1))))) | 
| 227 | 212, 213,
211, 118 | addsub4d 11667 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1))))) | 
| 228 | 226, 227 | eqtr4d 2780 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 229 | 220, 228 | breqtrd 5169 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 230 | 186, 204,
132, 191, 229 | lemul2ad 12208 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 231 | 7, 187, 205, 230 | fsumle 15835 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 232 | 204 | recnd 11289 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ) | 
| 233 | 112, 232 | mulcld 11281 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ) | 
| 234 | 7, 233 | fsumcl 15769 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ) | 
| 235 | 6, 17 | negdi2d 11634 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
-((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 236 | 29 | rprege0d 13084 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) | 
| 237 |  | flge0nn0 13860 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ0) | 
| 238 |  | nn0p1nn 12565 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((⌊‘𝑥)
∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ) | 
| 239 | 236, 237,
238 | 3syl 18 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
∈ ℕ) | 
| 240 | 3, 239 | nndivred 12320 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈
ℝ) | 
| 241 |  | 2re 12340 | . . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ | 
| 242 | 241 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℝ) | 
| 243 |  | flltp1 13840 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → 𝑥 < ((⌊‘𝑥) + 1)) | 
| 244 | 3, 243 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < ((⌊‘𝑥) + 1)) | 
| 245 | 239 | nncnd 12282 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
∈ ℂ) | 
| 246 | 245 | mulridd 11278 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘𝑥) + 1)
· 1) = ((⌊‘𝑥) + 1)) | 
| 247 | 244, 246 | breqtrrd 5171 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < (((⌊‘𝑥) + 1) ·
1)) | 
| 248 | 239 | nnrpd 13075 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
∈ ℝ+) | 
| 249 | 3, 27, 248 | ltdivmuld 13128 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) < 1 ↔ 𝑥 < (((⌊‘𝑥) + 1) ·
1))) | 
| 250 | 247, 249 | mpbird 257 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 1) | 
| 251 |  | 1lt2 12437 | . . . . . . . . . . . . . . . . . . . 20
⊢ 1 <
2 | 
| 252 | 251 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 <
2) | 
| 253 | 240, 27, 242, 250, 252 | lttrd 11422 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 2) | 
| 254 |  | chpeq0 27252 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ →
((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) =
0 ↔ (𝑥 /
((⌊‘𝑥) + 1))
< 2)) | 
| 255 | 240, 254 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) =
0 ↔ (𝑥 /
((⌊‘𝑥) + 1))
< 2)) | 
| 256 | 253, 255 | mpbird 257 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(ψ‘(𝑥 /
((⌊‘𝑥) + 1))) =
0) | 
| 257 | 256 | oveq1d 7446 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1))) = (0 + (𝑥 / ((⌊‘𝑥) + 1)))) | 
| 258 | 240 | recnd 11289 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈
ℂ) | 
| 259 | 258 | addlidd 11462 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (0 + (𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1))) | 
| 260 | 257, 259 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1))) | 
| 261 | 260 | oveq2d 7447 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) =
(((⌊‘𝑥) + 1)
· (𝑥 /
((⌊‘𝑥) +
1)))) | 
| 262 | 239 | nnne0d 12316 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
≠ 0) | 
| 263 | 18, 245, 262 | divcan2d 12045 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘𝑥) + 1)
· (𝑥 /
((⌊‘𝑥) + 1))) =
𝑥) | 
| 264 | 261, 263 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) = 𝑥) | 
| 265 | 18 | div1d 12035 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥) | 
| 266 | 265 | fveq2d 6910 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(ψ‘(𝑥 / 1)) =
(ψ‘𝑥)) | 
| 267 | 266, 265 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)) =
((ψ‘𝑥) + 𝑥)) | 
| 268 | 267 | oveq2d 7447 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1))) = (1 ·
((ψ‘𝑥) + 𝑥))) | 
| 269 | 5, 3 | readdcld 11290 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) + 𝑥) ∈
ℝ) | 
| 270 | 269 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) + 𝑥) ∈
ℂ) | 
| 271 | 270 | mullidd 11279 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 ·
((ψ‘𝑥) + 𝑥)) = ((ψ‘𝑥) + 𝑥)) | 
| 272 | 268, 271 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1))) =
((ψ‘𝑥) + 𝑥)) | 
| 273 | 264, 272 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) = (𝑥 − ((ψ‘𝑥) + 𝑥))) | 
| 274 | 270, 18 | negsubdi2d 11636 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
-(((ψ‘𝑥) + 𝑥) − 𝑥) = (𝑥 − ((ψ‘𝑥) + 𝑥))) | 
| 275 | 6, 18 | pncand 11621 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) + 𝑥) − 𝑥) = (ψ‘𝑥)) | 
| 276 | 275 | negeqd 11502 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
-(((ψ‘𝑥) + 𝑥) − 𝑥) = -(ψ‘𝑥)) | 
| 277 | 273, 274,
276 | 3eqtr2d 2783 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) =
-(ψ‘𝑥)) | 
| 278 | 3 | flcld 13838 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(⌊‘𝑥) ∈
ℤ) | 
| 279 |  | fzval3 13773 | . . . . . . . . . . . . . 14
⊢
((⌊‘𝑥)
∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1))) | 
| 280 | 278, 279 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥)) =
(1..^((⌊‘𝑥) +
1))) | 
| 281 | 280 | eqcomd 2743 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1..^((⌊‘𝑥) +
1)) = (1...(⌊‘𝑥))) | 
| 282 | 112, 113 | pncan2d 11622 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑛 + 1) −
𝑛) = 1) | 
| 283 | 282 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝑛 + 1) −
𝑛) ·
((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 284 | 15 | recnd 11289 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ) | 
| 285 | 284 | mullidd 11279 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 286 | 283, 285 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝑛 + 1) −
𝑛) ·
((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 287 | 281, 286 | sumeq12rdv 15743 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 288 | 277, 287 | oveq12d 7449 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) −
Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 289 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (𝑥 / 𝑚) = (𝑥 / 𝑛)) | 
| 290 | 289 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 𝑛))) | 
| 291 | 290, 289 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))) | 
| 292 | 291 | ancli 548 | . . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑚 = 𝑛 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) | 
| 293 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑛 + 1) → (𝑥 / 𝑚) = (𝑥 / (𝑛 + 1))) | 
| 294 | 293 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑛 + 1) → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / (𝑛 + 1)))) | 
| 295 | 294, 293 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 + 1) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) | 
| 296 | 295 | ancli 548 | . . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 + 1) → (𝑚 = (𝑛 + 1) ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 297 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = 1 → (𝑥 / 𝑚) = (𝑥 / 1)) | 
| 298 | 297 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ (𝑚 = 1 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 1))) | 
| 299 | 298, 297 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (𝑚 = 1 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1))) | 
| 300 | 299 | ancli 548 | . . . . . . . . . . . 12
⊢ (𝑚 = 1 → (𝑚 = 1 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) | 
| 301 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = ((⌊‘𝑥) + 1) → (𝑥 / 𝑚) = (𝑥 / ((⌊‘𝑥) + 1))) | 
| 302 | 301 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ (𝑚 = ((⌊‘𝑥) + 1) →
(ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / ((⌊‘𝑥) + 1)))) | 
| 303 | 302, 301 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (𝑚 = ((⌊‘𝑥) + 1) →
((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) | 
| 304 | 303 | ancli 548 | . . . . . . . . . . . 12
⊢ (𝑚 = ((⌊‘𝑥) + 1) → (𝑚 = ((⌊‘𝑥) + 1) ∧
((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))))) | 
| 305 |  | nnuz 12921 | . . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) | 
| 306 | 239, 305 | eleqtrdi 2851 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
∈ (ℤ≥‘1)) | 
| 307 |  | elfznn 13593 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈
(1...((⌊‘𝑥) +
1)) → 𝑚 ∈
ℕ) | 
| 308 | 307 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → 𝑚 ∈
ℕ) | 
| 309 | 308 | nncnd 12282 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → 𝑚 ∈
ℂ) | 
| 310 | 3 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → 𝑥 ∈
ℝ) | 
| 311 | 310, 308 | nndivred 12320 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → (𝑥 / 𝑚) ∈
ℝ) | 
| 312 |  | chpcl 27167 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ) | 
| 313 | 311, 312 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → (ψ‘(𝑥
/ 𝑚)) ∈
ℝ) | 
| 314 | 313, 311 | readdcld 11290 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℝ) | 
| 315 | 314 | recnd 11289 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℂ) | 
| 316 | 292, 296,
300, 304, 306, 309, 315 | fsumparts 15842 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(𝑛 ·
(((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) −
Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 317 | 212, 213 | addcld 11280 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) ∈ ℂ) | 
| 318 | 211, 118 | addcld 11280 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ) | 
| 319 | 317, 318 | negsubdi2d 11636 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ -(((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) | 
| 320 | 319 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
-(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))))) | 
| 321 | 112, 232 | mulneg2d 11717 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
-(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 322 | 320, 321 | eqtr3d 2779 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 323 | 281, 322 | sumeq12rdv 15743 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(𝑛 ·
(((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 324 | 316, 323 | eqtr3d 2779 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) −
Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 325 | 235, 288,
324 | 3eqtr2d 2783 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
-((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 326 | 7, 233 | fsumneg 15823 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) | 
| 327 | 325, 326 | eqtr2d 2778 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → -Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 328 | 234, 197,
327 | neg11d 11632 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 329 | 231, 328 | breqtrd 5169 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) | 
| 330 | 188, 174,
35, 329 | lediv1dd 13135 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) | 
| 331 | 175 | leabsd 15453 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))) | 
| 332 | 189, 175,
199, 330, 331 | letrd 11418 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))) | 
| 333 | 196, 332 | eqbrtrd 5165 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))) | 
| 334 | 333 | adantrr 717 | . 2
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))) | 
| 335 | 1, 173, 175, 190, 334 | o1le 15689 | 1
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) |