Step | Hyp | Ref
| Expression |
1 | | 1red 10976 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
2 | | elioore 13109 |
. . . . . . . 8
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
3 | 2 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ) |
4 | | chpcl 26273 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(ψ‘𝑥) ∈
ℝ) |
6 | 5 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(ψ‘𝑥) ∈
ℂ) |
7 | | fzfid 13693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥))
∈ Fin) |
8 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
9 | | elfznn 13285 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
10 | 9 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
11 | 10 | peano2nnd 11990 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 + 1) ∈
ℕ) |
12 | 8, 11 | nndivred 12027 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / (𝑛 + 1)) ∈
ℝ) |
13 | | chpcl 26273 |
. . . . . . . . 9
⊢ ((𝑥 / (𝑛 + 1)) ∈ ℝ →
(ψ‘(𝑥 / (𝑛 + 1))) ∈
ℝ) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
(𝑛 + 1))) ∈
ℝ) |
15 | 14, 12 | readdcld 11004 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ) |
16 | 7, 15 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℝ) |
17 | 16 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ) |
18 | 3 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℂ) |
19 | | eliooord 13138 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
20 | 19 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
21 | 20 | simpld 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
22 | 3, 21 | rplogcld 25784 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ+) |
23 | 22 | rpcnd 12774 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℂ) |
24 | 18, 23 | mulcld 10995 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈
ℂ) |
25 | | 1rp 12734 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
26 | 25 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ+) |
27 | | 1red 10976 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ) |
28 | 27, 3, 21 | ltled 11123 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
29 | 3, 26, 28 | rpgecld 12811 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ+) |
30 | 29 | rpne0d 12777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0) |
31 | 22 | rpne0d 12777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ≠
0) |
32 | 18, 23, 30, 31 | mulne0d 11627 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0) |
33 | 6, 17, 24, 32 | divdird 11789 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))) |
34 | 33 | mpteq2dva 5174 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))))) |
35 | 29, 22 | rpmulcld 12788 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈
ℝ+) |
36 | 5, 35 | rerpdivcld 12803 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) / (𝑥 · (log‘𝑥))) ∈
ℝ) |
37 | 16, 35 | rerpdivcld 12803 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℝ) |
38 | 6, 18, 23, 30, 31 | divdiv1d 11782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = ((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) |
39 | 5, 29 | rerpdivcld 12803 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) / 𝑥) ∈
ℝ) |
40 | 39 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) / 𝑥) ∈
ℂ) |
41 | 40, 23, 31 | divrecd 11754 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) / 𝑥) / (log‘𝑥)) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) |
42 | 38, 41 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) / (𝑥 · (log‘𝑥))) = (((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) |
43 | 42 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥))))) |
44 | 22 | rprecred 12783 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 /
(log‘𝑥)) ∈
ℝ) |
45 | 29 | ex 413 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈
ℝ+)) |
46 | 45 | ssrdv 3927 |
. . . . . . 7
⊢ (𝜑 → (1(,)+∞) ⊆
ℝ+) |
47 | | chpo1ub 26628 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
↦ ((ψ‘𝑥) /
𝑥)) ∈
𝑂(1) |
48 | 47 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((ψ‘𝑥) / 𝑥)) ∈
𝑂(1)) |
49 | 46, 48 | o1res2 15272 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((ψ‘𝑥) / 𝑥)) ∈
𝑂(1)) |
50 | | divlogrlim 25790 |
. . . . . . 7
⊢ (𝑥 ∈ (1(,)+∞) ↦
(1 / (log‘𝑥)))
⇝𝑟 0 |
51 | | rlimo1 15326 |
. . . . . . 7
⊢ ((𝑥 ∈ (1(,)+∞) ↦
(1 / (log‘𝑥)))
⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 /
(log‘𝑥))) ∈
𝑂(1)) |
52 | 50, 51 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 /
(log‘𝑥))) ∈
𝑂(1)) |
53 | 39, 44, 49, 52 | o1mul2 15334 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) / 𝑥) · (1 / (log‘𝑥)))) ∈
𝑂(1)) |
54 | 43, 53 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
((ψ‘𝑥) / (𝑥 · (log‘𝑥)))) ∈
𝑂(1)) |
55 | | pntrlog2bndlem2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
56 | 55 | rpred 12772 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
57 | 56, 1 | readdcld 11004 |
. . . . . . 7
⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
58 | 57 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈
ℝ) |
59 | 27, 44 | readdcld 11004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 + (1 /
(log‘𝑥))) ∈
ℝ) |
60 | | ioossre 13140 |
. . . . . . 7
⊢
(1(,)+∞) ⊆ ℝ |
61 | 57 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
62 | | o1const 15329 |
. . . . . . 7
⊢
(((1(,)+∞) ⊆ ℝ ∧ (𝐴 + 1) ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦
(𝐴 + 1)) ∈
𝑂(1)) |
63 | 60, 61, 62 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 + 1)) ∈
𝑂(1)) |
64 | | 1cnd 10970 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
65 | | o1const 15329 |
. . . . . . . 8
⊢
(((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦
1) ∈ 𝑂(1)) |
66 | 60, 64, 65 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈
𝑂(1)) |
67 | 27, 44, 66, 52 | o1add2 15333 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 + (1 /
(log‘𝑥)))) ∈
𝑂(1)) |
68 | 58, 59, 63, 67 | o1mul2 15334 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((𝐴 + 1) · (1 + (1 /
(log‘𝑥))))) ∈
𝑂(1)) |
69 | 58, 59 | remulcld 11005 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 /
(log‘𝑥)))) ∈
ℝ) |
70 | 37 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ∈ ℂ) |
71 | | chpge0 26275 |
. . . . . . . . . . . 12
⊢ ((𝑥 / (𝑛 + 1)) ∈ ℝ → 0 ≤
(ψ‘(𝑥 / (𝑛 + 1)))) |
72 | 12, 71 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (ψ‘(𝑥 / (𝑛 + 1)))) |
73 | 10 | nnrpd 12770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
74 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ+) |
75 | 73, 74 | rpaddcld 12787 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 + 1) ∈
ℝ+) |
76 | 29 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
77 | 76 | rpge0d 12776 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ 𝑥) |
78 | 8, 75, 77 | divge0d 12812 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (𝑥 / (𝑛 + 1))) |
79 | 14, 12, 72, 78 | addge0d 11551 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
80 | 7, 15, 79 | fsumge0 15507 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
81 | 16, 35, 80 | divge0d 12812 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
(Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) |
82 | 37, 81 | absidd 15134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) |
83 | 69 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 /
(log‘𝑥)))) ∈
ℂ) |
84 | 83 | abscld 15148 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘((𝐴 + 1)
· (1 + (1 / (log‘𝑥))))) ∈ ℝ) |
85 | 16, 29 | rerpdivcld 12803 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ∈ ℝ) |
86 | 29 | relogcld 25778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ) |
87 | 86, 27 | readdcld 11004 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℝ) |
88 | 58, 87 | remulcld 11005 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · ((log‘𝑥) + 1)) ∈
ℝ) |
89 | 58, 3 | remulcld 11005 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈
ℝ) |
90 | 10 | nnrecred 12024 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℝ) |
91 | 7, 90 | fsumrecl 15446 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ∈
ℝ) |
92 | 89, 91 | remulcld 11005 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛)) ∈
ℝ) |
93 | 89, 87 | remulcld 11005 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) ∈
ℝ) |
94 | 56 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐴 ∈
ℝ) |
95 | | 1red 10976 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
96 | 94, 95 | readdcld 11004 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐴 + 1) ∈
ℝ) |
97 | 96, 8 | remulcld 11005 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 + 1) ·
𝑥) ∈
ℝ) |
98 | 97, 90 | remulcld 11005 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) · (1 / 𝑛)) ∈
ℝ) |
99 | 97, 11 | nndivred 12027 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / (𝑛 + 1)) ∈ ℝ) |
100 | 97, 10 | nndivred 12027 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / 𝑛) ∈ ℝ) |
101 | 94, 12 | remulcld 11005 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐴 · (𝑥 / (𝑛 + 1))) ∈ ℝ) |
102 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑥 / (𝑛 + 1)) → (ψ‘𝑦) = (ψ‘(𝑥 / (𝑛 + 1)))) |
103 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑥 / (𝑛 + 1)) → (𝐴 · 𝑦) = (𝐴 · (𝑥 / (𝑛 + 1)))) |
104 | 102, 103 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑥 / (𝑛 + 1)) → ((ψ‘𝑦) ≤ (𝐴 · 𝑦) ↔ (ψ‘(𝑥 / (𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1))))) |
105 | | pntrlog2bndlem2.2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑦 ∈ ℝ+
(ψ‘𝑦) ≤ (𝐴 · 𝑦)) |
106 | 105 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ∀𝑦 ∈
ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦)) |
107 | 76, 75 | rpdivcld 12789 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / (𝑛 + 1)) ∈
ℝ+) |
108 | 104, 106,
107 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
(𝑛 + 1))) ≤ (𝐴 · (𝑥 / (𝑛 + 1)))) |
109 | 14, 101, 12, 108 | leadd1dd 11589 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
110 | 61 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐴 + 1) ∈
ℂ) |
111 | 18 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) |
112 | 10 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℂ) |
113 | | 1cnd 10970 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℂ) |
114 | 112, 113 | addcld 10994 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 + 1) ∈
ℂ) |
115 | 11 | nnne0d 12023 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 + 1) ≠
0) |
116 | 110, 111,
114, 115 | divassd 11786 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / (𝑛 + 1)) = ((𝐴 + 1) · (𝑥 / (𝑛 + 1)))) |
117 | 94 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐴 ∈
ℂ) |
118 | 111, 114,
115 | divcld 11751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / (𝑛 + 1)) ∈
ℂ) |
119 | 117, 113,
118 | adddird 11000 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 + 1) ·
(𝑥 / (𝑛 + 1))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1))))) |
120 | 118 | mulid2d 10993 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · (𝑥 /
(𝑛 + 1))) = (𝑥 / (𝑛 + 1))) |
121 | 120 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 · (𝑥 / (𝑛 + 1))) + (1 · (𝑥 / (𝑛 + 1)))) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
122 | 116, 119,
121 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / (𝑛 + 1)) = ((𝐴 · (𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
123 | 109, 122 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / (𝑛 + 1))) |
124 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈
ℝ) |
125 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈
ℝ+) |
126 | 125 | rpge0d 12776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐴) |
127 | 26 | rpge0d 12776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
1) |
128 | 124, 27, 126, 127 | addge0d 11551 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝐴 + 1)) |
129 | 29 | rpge0d 12776 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) |
130 | 58, 3, 128, 129 | mulge0d 11552 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ ((𝐴 + 1) · 𝑥)) |
131 | 130 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((𝐴 + 1)
· 𝑥)) |
132 | 10 | nnred 11988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ) |
133 | 132 | lep1d 11906 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≤ (𝑛 + 1)) |
134 | 73, 75, 97, 131, 133 | lediv2ad 12794 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / (𝑛 + 1)) ≤ (((𝐴 + 1) · 𝑥) / 𝑛)) |
135 | 15, 99, 100, 123, 134 | letrd 11132 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) / 𝑛)) |
136 | 97 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 + 1) ·
𝑥) ∈
ℂ) |
137 | 10 | nnne0d 12023 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≠
0) |
138 | 136, 112,
137 | divrecd 11754 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝐴 + 1) ·
𝑥) / 𝑛) = (((𝐴 + 1) · 𝑥) · (1 / 𝑛))) |
139 | 135, 138 | breqtrd 5100 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · (1 / 𝑛))) |
140 | 7, 15, 98, 139 | fsumle 15511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛))) |
141 | 89 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · 𝑥) ∈
ℂ) |
142 | 112, 137 | reccld 11744 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 / 𝑛) ∈
ℂ) |
143 | 7, 141, 142 | fsummulc2 15496 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛)) = Σ𝑛 ∈
(1...(⌊‘𝑥))(((𝐴 + 1) · 𝑥) · (1 / 𝑛))) |
144 | 140, 143 | breqtrrd 5102 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛))) |
145 | | harmonicubnd 26159 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) |
146 | 3, 28, 145 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛) ≤ ((log‘𝑥) + 1)) |
147 | 91, 87, 89, 130, 146 | lemul2ad 11915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
𝑛)) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1))) |
148 | 16, 92, 93, 144, 147 | letrd 11132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1))) |
149 | 61 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 + 1) ∈
ℂ) |
150 | 87 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℂ) |
151 | 149, 18, 150 | mul32d 11185 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · 𝑥) · ((log‘𝑥) + 1)) = (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥)) |
152 | 148, 151 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥)) |
153 | 16, 88, 29 | ledivmul2d 12826 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1)) ↔ Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) · 𝑥))) |
154 | 152, 153 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) ≤ ((𝐴 + 1) · ((log‘𝑥) + 1))) |
155 | 85, 88, 22, 154 | lediv1dd 12830 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) ≤ (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥))) |
156 | 17, 18, 23, 30, 31 | divdiv1d 11782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / 𝑥) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) |
157 | | 1cnd 10970 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℂ) |
158 | 23, 157 | addcld 10994 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) + 1) ∈
ℂ) |
159 | 149, 158,
23, 31 | divassd 11786 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (((log‘𝑥) + 1) / (log‘𝑥)))) |
160 | 23, 157, 23, 31 | divdird 11789 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) + 1) /
(log‘𝑥)) =
(((log‘𝑥) /
(log‘𝑥)) + (1 /
(log‘𝑥)))) |
161 | 23, 31 | dividd 11749 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) /
(log‘𝑥)) =
1) |
162 | 161 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((log‘𝑥) /
(log‘𝑥)) + (1 /
(log‘𝑥))) = (1 + (1 /
(log‘𝑥)))) |
163 | 160, 162 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 + (1 /
(log‘𝑥))) =
(((log‘𝑥) + 1) /
(log‘𝑥))) |
164 | 163 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 /
(log‘𝑥)))) = ((𝐴 + 1) ·
(((log‘𝑥) + 1) /
(log‘𝑥)))) |
165 | 159, 164 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((𝐴 + 1) · ((log‘𝑥) + 1)) / (log‘𝑥)) = ((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) |
166 | 155, 156,
165 | 3brtr3d 5105 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ ((𝐴 + 1) · (1 + (1 / (log‘𝑥))))) |
167 | 69 | leabsd 15126 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝐴 + 1) · (1 + (1 /
(log‘𝑥)))) ≤
(abs‘((𝐴 + 1)
· (1 + (1 / (log‘𝑥)))))) |
168 | 37, 69, 84, 166, 167 | letrd 11132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))) |
169 | 82, 168 | eqbrtrd 5096 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))) |
170 | 169 | adantrr 714 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘((𝐴 + 1) · (1 + (1 / (log‘𝑥)))))) |
171 | 1, 68, 69, 70, 170 | o1le 15364 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) |
172 | 36, 37, 54, 171 | o1add2 15333 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1)) |
173 | 34, 172 | eqeltrd 2839 |
. 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) |
174 | 5, 16 | readdcld 11004 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ) |
175 | 174, 35 | rerpdivcld 12803 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℝ) |
176 | | pntrlog2bnd.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
177 | 176 | pntrf 26711 |
. . . . . . . . . . 11
⊢ 𝑅:ℝ+⟶ℝ |
178 | 177 | ffvelrni 6960 |
. . . . . . . . . 10
⊢ ((𝑥 / (𝑛 + 1)) ∈ ℝ+ →
(𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ) |
179 | 107, 178 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ) |
180 | 179 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ) |
181 | 76, 73 | rpdivcld 12789 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
182 | 177 | ffvelrni 6960 |
. . . . . . . . . 10
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
183 | 181, 182 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
184 | 183 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) |
185 | 180, 184 | subcld 11332 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) ∈ ℂ) |
186 | 185 | abscld 15148 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℝ) |
187 | 132, 186 | remulcld 11005 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ) |
188 | 7, 187 | fsumrecl 15446 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ) |
189 | 188, 35 | rerpdivcld 12803 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ) |
190 | 189 | recnd 11003 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℂ) |
191 | 73 | rpge0d 12776 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ 𝑛) |
192 | 185 | absge0d 15156 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) |
193 | 132, 186,
191, 192 | mulge0d 11552 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (𝑛 ·
(abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) |
194 | 7, 187, 193 | fsumge0 15507 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) |
195 | 188, 35, 194 | divge0d 12812 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤
(Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) |
196 | 189, 195 | absidd 15134 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) |
197 | 6, 17 | addcld 10994 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ) |
198 | 197, 24, 32 | divcld 11751 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ∈ ℂ) |
199 | 198 | abscld 15148 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) ∈ ℝ) |
200 | 8, 10 | nndivred 12027 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) |
201 | | chpcl 26273 |
. . . . . . . . . . . 12
⊢ ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ) |
202 | 200, 201 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑛)) ∈
ℝ) |
203 | 202, 200 | readdcld 11004 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) ∈ ℝ) |
204 | 203, 15 | resubcld 11403 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℝ) |
205 | 132, 204 | remulcld 11005 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℝ) |
206 | 176 | pntrval 26710 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 / (𝑛 + 1)) ∈ ℝ+ →
(𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1)))) |
207 | 107, 206 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / (𝑛 + 1))) = ((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1)))) |
208 | 176 | pntrval 26710 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) |
209 | 181, 208 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) |
210 | 207, 209 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))) |
211 | 14 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
(𝑛 + 1))) ∈
ℂ) |
212 | 202 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑛)) ∈
ℂ) |
213 | 111, 112,
137 | divcld 11751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℂ) |
214 | 211, 118,
212, 213 | sub4d 11381 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((ψ‘(𝑥 /
(𝑛 + 1))) − (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) |
215 | 210, 214 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) |
216 | 215 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) = (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))) |
217 | 211, 212 | subcld 11332 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) −
(ψ‘(𝑥 / 𝑛))) ∈
ℂ) |
218 | 118, 213 | subcld 11332 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)) ∈ ℂ) |
219 | 217, 218 | abs2dif2d 15170 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛))) − ((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))) |
220 | 216, 219 | eqbrtrd 5096 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛))))) |
221 | 73, 75, 8, 77, 133 | lediv2ad 12794 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛)) |
222 | | chpwordi 26306 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 / (𝑛 + 1)) ∈ ℝ ∧ (𝑥 / 𝑛) ∈ ℝ ∧ (𝑥 / (𝑛 + 1)) ≤ (𝑥 / 𝑛)) → (ψ‘(𝑥 / (𝑛 + 1))) ≤ (ψ‘(𝑥 / 𝑛))) |
223 | 12, 200, 221, 222 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
(𝑛 + 1))) ≤
(ψ‘(𝑥 / 𝑛))) |
224 | 14, 202, 223 | abssuble0d 15144 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) = ((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1))))) |
225 | 12, 200, 221 | abssuble0d 15144 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑥 /
(𝑛 + 1)) − (𝑥 / 𝑛))) = ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1)))) |
226 | 224, 225 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1))))) |
227 | 212, 213,
211, 118 | addsub4d 11379 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / 𝑛)) − (ψ‘(𝑥 / (𝑛 + 1)))) + ((𝑥 / 𝑛) − (𝑥 / (𝑛 + 1))))) |
228 | 226, 227 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘((ψ‘(𝑥 / (𝑛 + 1))) − (ψ‘(𝑥 / 𝑛)))) + (abs‘((𝑥 / (𝑛 + 1)) − (𝑥 / 𝑛)))) = (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
229 | 220, 228 | breqtrd 5100 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ≤ (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
230 | 186, 204,
132, 191, 229 | lemul2ad 11915 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ (𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
231 | 7, 187, 205, 230 | fsumle 15511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
232 | 204 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) ∈ ℂ) |
233 | 112, 232 | mulcld 10995 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ) |
234 | 7, 233 | fsumcl 15445 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) ∈ ℂ) |
235 | 6, 17 | negdi2d 11346 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
-((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
236 | 29 | rprege0d 12779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) |
237 | | flge0nn0 13540 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ0) |
238 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((⌊‘𝑥)
∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ) |
239 | 236, 237,
238 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
∈ ℕ) |
240 | 3, 239 | nndivred 12027 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈
ℝ) |
241 | | 2re 12047 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ |
242 | 241 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℝ) |
243 | | flltp1 13520 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → 𝑥 < ((⌊‘𝑥) + 1)) |
244 | 3, 243 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < ((⌊‘𝑥) + 1)) |
245 | 239 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
∈ ℂ) |
246 | 245 | mulid1d 10992 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘𝑥) + 1)
· 1) = ((⌊‘𝑥) + 1)) |
247 | 244, 246 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < (((⌊‘𝑥) + 1) ·
1)) |
248 | 239 | nnrpd 12770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
∈ ℝ+) |
249 | 3, 27, 248 | ltdivmuld 12823 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) < 1 ↔ 𝑥 < (((⌊‘𝑥) + 1) ·
1))) |
250 | 247, 249 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 1) |
251 | | 1lt2 12144 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 <
2 |
252 | 251 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 <
2) |
253 | 240, 27, 242, 250, 252 | lttrd 11136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 2) |
254 | | chpeq0 26356 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ →
((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) =
0 ↔ (𝑥 /
((⌊‘𝑥) + 1))
< 2)) |
255 | 240, 254 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) =
0 ↔ (𝑥 /
((⌊‘𝑥) + 1))
< 2)) |
256 | 253, 255 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(ψ‘(𝑥 /
((⌊‘𝑥) + 1))) =
0) |
257 | 256 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1))) = (0 + (𝑥 / ((⌊‘𝑥) + 1)))) |
258 | 240 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈
ℂ) |
259 | 258 | addid2d 11176 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (0 + (𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1))) |
260 | 257, 259 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1))) = (𝑥 / ((⌊‘𝑥) + 1))) |
261 | 260 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) =
(((⌊‘𝑥) + 1)
· (𝑥 /
((⌊‘𝑥) +
1)))) |
262 | 239 | nnne0d 12023 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
≠ 0) |
263 | 18, 245, 262 | divcan2d 11753 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘𝑥) + 1)
· (𝑥 /
((⌊‘𝑥) + 1))) =
𝑥) |
264 | 261, 263 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) = 𝑥) |
265 | 18 | div1d 11743 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥) |
266 | 265 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(ψ‘(𝑥 / 1)) =
(ψ‘𝑥)) |
267 | 266, 265 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)) =
((ψ‘𝑥) + 𝑥)) |
268 | 267 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1))) = (1 ·
((ψ‘𝑥) + 𝑥))) |
269 | 5, 3 | readdcld 11004 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) + 𝑥) ∈
ℝ) |
270 | 269 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((ψ‘𝑥) + 𝑥) ∈
ℂ) |
271 | 270 | mulid2d 10993 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 ·
((ψ‘𝑥) + 𝑥)) = ((ψ‘𝑥) + 𝑥)) |
272 | 268, 271 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1))) =
((ψ‘𝑥) + 𝑥)) |
273 | 264, 272 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) = (𝑥 − ((ψ‘𝑥) + 𝑥))) |
274 | 270, 18 | negsubdi2d 11348 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
-(((ψ‘𝑥) + 𝑥) − 𝑥) = (𝑥 − ((ψ‘𝑥) + 𝑥))) |
275 | 6, 18 | pncand 11333 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) + 𝑥) − 𝑥) = (ψ‘𝑥)) |
276 | 275 | negeqd 11215 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
-(((ψ‘𝑥) + 𝑥) − 𝑥) = -(ψ‘𝑥)) |
277 | 273, 274,
276 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) =
-(ψ‘𝑥)) |
278 | 3 | flcld 13518 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(⌊‘𝑥) ∈
ℤ) |
279 | | fzval3 13456 |
. . . . . . . . . . . . . 14
⊢
((⌊‘𝑥)
∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1))) |
280 | 278, 279 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥)) =
(1..^((⌊‘𝑥) +
1))) |
281 | 280 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1..^((⌊‘𝑥) +
1)) = (1...(⌊‘𝑥))) |
282 | 112, 113 | pncan2d 11334 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑛 + 1) −
𝑛) = 1) |
283 | 282 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝑛 + 1) −
𝑛) ·
((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
284 | 15 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ) |
285 | 284 | mulid2d 10993 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
286 | 283, 285 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((𝑛 + 1) −
𝑛) ·
((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
287 | 281, 286 | sumeq12rdv 15419 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
288 | 277, 287 | oveq12d 7293 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) −
Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (-(ψ‘𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
289 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (𝑥 / 𝑚) = (𝑥 / 𝑛)) |
290 | 289 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 𝑛))) |
291 | 290, 289 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))) |
292 | 291 | ancli 549 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑚 = 𝑛 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) |
293 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑛 + 1) → (𝑥 / 𝑚) = (𝑥 / (𝑛 + 1))) |
294 | 293 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑛 + 1) → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / (𝑛 + 1)))) |
295 | 294, 293 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 + 1) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) |
296 | 295 | ancli 549 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 + 1) → (𝑚 = (𝑛 + 1) ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
297 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 1 → (𝑥 / 𝑚) = (𝑥 / 1)) |
298 | 297 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 1 → (ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / 1))) |
299 | 298, 297 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 1 → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1))) |
300 | 299 | ancli 549 |
. . . . . . . . . . . 12
⊢ (𝑚 = 1 → (𝑚 = 1 ∧ ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / 1)) + (𝑥 / 1)))) |
301 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = ((⌊‘𝑥) + 1) → (𝑥 / 𝑚) = (𝑥 / ((⌊‘𝑥) + 1))) |
302 | 301 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = ((⌊‘𝑥) + 1) →
(ψ‘(𝑥 / 𝑚)) = (ψ‘(𝑥 / ((⌊‘𝑥) + 1)))) |
303 | 302, 301 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑚 = ((⌊‘𝑥) + 1) →
((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) |
304 | 303 | ancli 549 |
. . . . . . . . . . . 12
⊢ (𝑚 = ((⌊‘𝑥) + 1) → (𝑚 = ((⌊‘𝑥) + 1) ∧
((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1))))) |
305 | | nnuz 12621 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
306 | 239, 305 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((⌊‘𝑥) + 1)
∈ (ℤ≥‘1)) |
307 | | elfznn 13285 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈
(1...((⌊‘𝑥) +
1)) → 𝑚 ∈
ℕ) |
308 | 307 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → 𝑚 ∈
ℕ) |
309 | 308 | nncnd 11989 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → 𝑚 ∈
ℂ) |
310 | 3 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → 𝑥 ∈
ℝ) |
311 | 310, 308 | nndivred 12027 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → (𝑥 / 𝑚) ∈
ℝ) |
312 | | chpcl 26273 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ) |
313 | 311, 312 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → (ψ‘(𝑥
/ 𝑚)) ∈
ℝ) |
314 | 313, 311 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℝ) |
315 | 314 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...((⌊‘𝑥) +
1))) → ((ψ‘(𝑥 / 𝑚)) + (𝑥 / 𝑚)) ∈ ℂ) |
316 | 292, 296,
300, 304, 306, 309, 315 | fsumparts 15518 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(𝑛 ·
(((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = (((((⌊‘𝑥) + 1) · ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) + (𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) −
Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
317 | 212, 213 | addcld 10994 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) ∈ ℂ) |
318 | 211, 118 | addcld 10994 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
(𝑛 + 1))) + (𝑥 / (𝑛 + 1))) ∈ ℂ) |
319 | 317, 318 | negsubdi2d 11348 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ -(((ψ‘(𝑥 /
𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) |
320 | 319 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
-(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = (𝑛 · (((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛))))) |
321 | 112, 232 | mulneg2d 11429 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
-(((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
322 | 320, 321 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ·
(((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = -(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
323 | 281, 322 | sumeq12rdv 15419 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(𝑛 ·
(((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))) − ((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
324 | 316, 323 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((((⌊‘𝑥) + 1)
· ((ψ‘(𝑥 /
((⌊‘𝑥) + 1))) +
(𝑥 / ((⌊‘𝑥) + 1)))) − (1 ·
((ψ‘(𝑥 / 1)) +
(𝑥 / 1)))) −
Σ𝑛 ∈
(1..^((⌊‘𝑥) +
1))(((𝑛 + 1) − 𝑛) · ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
325 | 235, 288,
324 | 3eqtr2d 2784 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
-((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
326 | 7, 233 | fsumneg 15499 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))-(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))))) |
327 | 325, 326 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → -Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = -((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
328 | 234, 197,
327 | neg11d 11344 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (((ψ‘(𝑥 / 𝑛)) + (𝑥 / 𝑛)) − ((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) = ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
329 | 231, 328 | breqtrd 5100 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ≤ ((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1))))) |
330 | 188, 174,
35, 329 | lediv1dd 12830 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥)))) |
331 | 175 | leabsd 15126 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((ψ‘𝑥) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))) |
332 | 189, 175,
199, 330, 331 | letrd 11132 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))) |
333 | 196, 332 | eqbrtrd 5096 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))) |
334 | 333 | adantrr 714 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(((ψ‘𝑥) + Σ𝑛 ∈ (1...(⌊‘𝑥))((ψ‘(𝑥 / (𝑛 + 1))) + (𝑥 / (𝑛 + 1)))) / (𝑥 · (log‘𝑥))))) |
335 | 1, 173, 175, 190, 334 | o1le 15364 |
1
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) |