| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2re 12340 | . . . . . . . . . . . . 13
⊢ 2 ∈
ℝ | 
| 2 | 1 | a1i 11 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ∈ ℝ) | 
| 3 |  | elioore 13417 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) | 
| 4 | 3 | adantl 481 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℝ) | 
| 5 |  | eliooord 13446 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) | 
| 6 | 5 | adantl 481 | . . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) | 
| 7 | 6 | simpld 494 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 < 𝑥) | 
| 8 | 4, 7 | rplogcld 26671 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈
ℝ+) | 
| 9 | 2, 8 | rerpdivcld 13108 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ) | 
| 10 |  | fzfid 14014 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin) | 
| 11 |  | elfznn 13593 | . . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈
(1...(⌊‘𝑥))
→ 𝑚 ∈
ℕ) | 
| 12 | 11 | adantl 481 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ) | 
| 13 |  | vmacl 27161 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ →
(Λ‘𝑚) ∈
ℝ) | 
| 14 | 12, 13 | syl 17 | . . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈
ℝ) | 
| 15 | 4 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ) | 
| 16 | 15, 12 | nndivred 12320 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑚) ∈ ℝ) | 
| 17 |  | chpcl 27167 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ) | 
| 18 | 16, 17 | syl 17 | . . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ) | 
| 19 | 14, 18 | remulcld 11291 | . . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑚)
· (ψ‘(𝑥 /
𝑚))) ∈
ℝ) | 
| 20 | 12 | nnrpd 13075 | . . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+) | 
| 21 | 20 | relogcld 26665 | . . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈
ℝ) | 
| 22 | 19, 21 | remulcld 11291 | . . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑚)
· (ψ‘(𝑥 /
𝑚))) ·
(log‘𝑚)) ∈
ℝ) | 
| 23 | 10, 22 | fsumrecl 15770 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) ∈ ℝ) | 
| 24 | 9, 23 | remulcld 11291 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) ∈ ℝ) | 
| 25 | 10, 19 | fsumrecl 15770 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) ∈ ℝ) | 
| 26 | 24, 25 | resubcld 11691 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℝ) | 
| 27 |  | 1rp 13038 | . . . . . . . . . . 11
⊢ 1 ∈
ℝ+ | 
| 28 | 27 | a1i 11 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℝ+) | 
| 29 |  | 1red 11262 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℝ) | 
| 30 | 29, 4, 7 | ltled 11409 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ≤ 𝑥) | 
| 31 | 4, 28, 30 | rpgecld 13116 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) | 
| 32 | 26, 31 | rerpdivcld 13108 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℝ) | 
| 33 | 32 | recnd 11289 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℂ) | 
| 34 |  | chpcl 27167 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) | 
| 35 | 4, 34 | syl 17 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℝ) | 
| 36 | 31 | relogcld 26665 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ) | 
| 37 | 35, 36 | remulcld 11291 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ) | 
| 38 | 37, 25 | readdcld 11290 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℝ) | 
| 39 | 38, 31 | rerpdivcld 13108 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℝ) | 
| 40 | 39 | recnd 11289 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℂ) | 
| 41 | 2, 36 | remulcld 11291 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ) | 
| 42 | 41 | recnd 11289 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℂ) | 
| 43 | 33, 40, 42 | addsubassd 11640 | . . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) − (2 · (log‘𝑥))) = (((((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))))) | 
| 44 | 26 | recnd 11289 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℂ) | 
| 45 | 38 | recnd 11289 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℂ) | 
| 46 | 4 | recnd 11289 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℂ) | 
| 47 | 31 | rpne0d 13082 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ≠ 0) | 
| 48 | 44, 45, 46, 47 | divdird 12081 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) / 𝑥) = (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥))) | 
| 49 | 24 | recnd 11289 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) ∈ ℂ) | 
| 50 | 25 | recnd 11289 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) ∈ ℂ) | 
| 51 | 37 | recnd 11289 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ) | 
| 52 | 49, 50, 51 | nppcan3d 11647 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) + ((ψ‘𝑥) · (log‘𝑥)))) | 
| 53 |  | elfznn 13593 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚))) → 𝑛 ∈
ℕ) | 
| 54 | 53 | ad2antll 729 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → 𝑛 ∈ ℕ) | 
| 55 |  | vmacl 27161 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) | 
| 56 | 54, 55 | syl 17 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑛) ∈
ℝ) | 
| 57 | 14 | adantrr 717 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑚) ∈
ℝ) | 
| 58 | 20 | adantrr 717 | . . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → 𝑚 ∈ ℝ+) | 
| 59 | 58 | relogcld 26665 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (log‘𝑚) ∈ ℝ) | 
| 60 | 57, 59 | remulcld 11291 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑚) · (log‘𝑚)) ∈
ℝ) | 
| 61 | 56, 60 | remulcld 11291 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚)))
∈ ℝ) | 
| 62 | 61 | recnd 11289 | . . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚)))
∈ ℂ) | 
| 63 | 4, 62 | fsumfldivdiag 27233 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) | 
| 64 | 14 | recnd 11289 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈
ℂ) | 
| 65 | 18 | recnd 11289 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℂ) | 
| 66 | 21 | recnd 11289 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈
ℂ) | 
| 67 | 64, 65, 66 | mul32d 11471 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑚)
· (ψ‘(𝑥 /
𝑚))) ·
(log‘𝑚)) =
(((Λ‘𝑚)
· (log‘𝑚))
· (ψ‘(𝑥 /
𝑚)))) | 
| 68 | 64, 66 | mulcld 11281 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑚)
· (log‘𝑚))
∈ ℂ) | 
| 69 | 68, 65 | mulcomd 11282 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑚)
· (log‘𝑚))
· (ψ‘(𝑥 /
𝑚))) = ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚)))) | 
| 70 |  | chpval 27165 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛)) | 
| 71 | 16, 70 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛)) | 
| 72 | 71 | oveq1d 7446 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) | 
| 73 |  | fzfid 14014 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
(1...(⌊‘(𝑥 /
𝑚))) ∈
Fin) | 
| 74 | 56 | anassrs 467 | . . . . . . . . . . . . . . . . . 18
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈
ℝ) | 
| 75 | 74 | recnd 11289 | . . . . . . . . . . . . . . . . 17
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈
ℂ) | 
| 76 | 73, 68, 75 | fsummulc1 15821 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))(Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚))) =
Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚)))) | 
| 77 | 72, 76 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) | 
| 78 | 67, 69, 77 | 3eqtrd 2781 | . . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑚)
· (ψ‘(𝑥 /
𝑚))) ·
(log‘𝑚)) =
Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚)))) | 
| 79 | 78 | sumeq2dv 15738 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) | 
| 80 |  | fzfid 14014 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(1...(⌊‘(𝑥 /
𝑛))) ∈
Fin) | 
| 81 |  | elfznn 13593 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) | 
| 82 | 81 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) | 
| 83 | 82, 55 | syl 17 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℝ) | 
| 84 | 83 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℂ) | 
| 85 |  | elfznn 13593 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛))) → 𝑚 ∈
ℕ) | 
| 86 | 85 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ) | 
| 87 | 86, 13 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈
ℝ) | 
| 88 | 86 | nnrpd 13075 | . . . . . . . . . . . . . . . . . 18
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+) | 
| 89 | 88 | relogcld 26665 | . . . . . . . . . . . . . . . . 17
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ) | 
| 90 | 87, 89 | remulcld 11291 | . . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈
ℝ) | 
| 91 | 90 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈
ℂ) | 
| 92 | 80, 84, 91 | fsummulc2 15820 | . . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) | 
| 93 | 92 | sumeq2dv 15738 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) | 
| 94 | 63, 79, 93 | 3eqtr4d 2787 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) | 
| 95 | 94 | oveq2d 7447 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))))) | 
| 96 | 95 | oveq1d 7446 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) + ((ψ‘𝑥) · (log‘𝑥))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥)))) | 
| 97 | 52, 96 | eqtrd 2777 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥)))) | 
| 98 | 97 | oveq1d 7446 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) / 𝑥) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) | 
| 99 | 48, 98 | eqtr3d 2779 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) | 
| 100 | 99 | oveq1d 7446 | . . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) − (2 · (log‘𝑥))) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))) | 
| 101 | 43, 100 | eqtr3d 2779 | . . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))) | 
| 102 | 101 | mpteq2dva 5242 | . . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))))) = (𝑥 ∈ (1(,)+∞) ↦ (((((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))))) | 
| 103 | 39, 41 | resubcld 11691 | . . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))) ∈
ℝ) | 
| 104 |  | selberg3lem2 27602 | . . . . . 6
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((2 / (log‘𝑥))
· Σ𝑚 ∈
(1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) ∈ 𝑂(1) | 
| 105 | 104 | a1i 11 | . . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) ∈ 𝑂(1)) | 
| 106 | 31 | ex 412 | . . . . . . 7
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) → 𝑥
∈ ℝ+)) | 
| 107 | 106 | ssrdv 3989 | . . . . . 6
⊢ (⊤
→ (1(,)+∞) ⊆ ℝ+) | 
| 108 |  | selberg2 27595 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1) | 
| 109 | 108 | a1i 11 | . . . . . 6
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1)) | 
| 110 | 107, 109 | o1res2 15599 | . . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1)) | 
| 111 | 32, 103, 105, 110 | o1add2 15660 | . . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))))) ∈
𝑂(1)) | 
| 112 | 102, 111 | eqeltrrd 2842 | . . 3
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1)) | 
| 113 | 80, 90 | fsumrecl 15770 | . . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈
ℝ) | 
| 114 | 83, 113 | remulcld 11291 | . . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈
ℝ) | 
| 115 | 10, 114 | fsumrecl 15770 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈
ℝ) | 
| 116 | 9, 115 | remulcld 11291 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) ∈
ℝ) | 
| 117 | 116, 37 | readdcld 11290 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) ∈
ℝ) | 
| 118 | 117, 31 | rerpdivcld 13108 | . . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ ℝ) | 
| 119 | 118, 41 | resubcld 11691 | . . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) ∈
ℝ) | 
| 120 | 119 | recnd 11289 | . . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) ∈
ℂ) | 
| 121 | 4 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ) | 
| 122 | 121, 82 | nndivred 12320 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ) | 
| 123 | 122 | adantr 480 | . . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑥 / 𝑛) ∈ ℝ) | 
| 124 | 123, 86 | nndivred 12320 | . . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ) | 
| 125 |  | chpcl 27167 | . . . . . . . . . . . . 13
⊢ (((𝑥 / 𝑛) / 𝑚) ∈ ℝ → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ) | 
| 126 | 124, 125 | syl 17 | . . . . . . . . . . . 12
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ) | 
| 127 | 87, 126 | remulcld 11291 | . . . . . . . . . . 11
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ) | 
| 128 | 80, 127 | fsumrecl 15770 | . . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ) | 
| 129 | 83, 128 | remulcld 11291 | . . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ) | 
| 130 | 10, 129 | fsumrecl 15770 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ) | 
| 131 | 9, 130 | remulcld 11291 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ) | 
| 132 | 37, 131 | resubcld 11691 | . . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℝ) | 
| 133 | 132, 31 | rerpdivcld 13108 | . . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) ∈ ℝ) | 
| 134 | 133 | recnd 11289 | . . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) ∈ ℂ) | 
| 135 | 116 | recnd 11289 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) ∈
ℂ) | 
| 136 | 131 | recnd 11289 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℂ) | 
| 137 | 51, 135, 136 | pnncand 11659 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))))) −
(((ψ‘𝑥) ·
(log‘𝑥)) − ((2
/ (log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) | 
| 138 | 135, 51 | addcomd 11463 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) = (((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))))) | 
| 139 | 138 | oveq1d 7446 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))))) −
(((ψ‘𝑥) ·
(log‘𝑥)) − ((2
/ (log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))) | 
| 140 | 87 | recnd 11289 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈
ℂ) | 
| 141 | 89 | recnd 11289 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℂ) | 
| 142 | 126 | recnd 11289 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℂ) | 
| 143 | 140, 141,
142 | adddid 11285 | . . . . . . . . . . . . . . . . . . 19
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) | 
| 144 | 143 | sumeq2dv 15738 | . . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) | 
| 145 | 127 | recnd 11289 | . . . . . . . . . . . . . . . . . . 19
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℂ) | 
| 146 | 80, 91, 145 | fsumadd 15776 | . . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) | 
| 147 | 144, 146 | eqtrd 2777 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) | 
| 148 | 147 | oveq2d 7447 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) | 
| 149 | 113 | recnd 11289 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈
ℂ) | 
| 150 | 128 | recnd 11289 | . . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℂ) | 
| 151 | 84, 149, 150 | adddid 11285 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) | 
| 152 | 148, 151 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) | 
| 153 | 152 | sumeq2dv 15738 | . . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) | 
| 154 | 114 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈
ℂ) | 
| 155 | 129 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℂ) | 
| 156 | 10, 154, 155 | fsumadd 15776 | . . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) | 
| 157 | 153, 156 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) | 
| 158 | 157 | oveq2d 7447 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) | 
| 159 | 9 | recnd 11289 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ) | 
| 160 | 115 | recnd 11289 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈
ℂ) | 
| 161 | 130 | recnd 11289 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℂ) | 
| 162 | 159, 160,
161 | adddid 11285 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) | 
| 163 | 158, 162 | eqtrd 2777 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) | 
| 164 | 137, 139,
163 | 3eqtr4d 2787 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))))) | 
| 165 | 164 | oveq1d 7446 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) / 𝑥) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) | 
| 166 | 117 | recnd 11289 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) ∈
ℂ) | 
| 167 | 51, 136 | subcld 11620 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℂ) | 
| 168 | 166, 167,
46, 47 | divsubdird 12082 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) / 𝑥) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))) | 
| 169 |  | 2cnd 12344 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ∈ ℂ) | 
| 170 | 89, 126 | readdcld 11290 | . . . . . . . . . . . . . . . . . 18
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ) | 
| 171 | 87, 170 | remulcld 11291 | . . . . . . . . . . . . . . . . 17
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ) | 
| 172 | 80, 171 | fsumrecl 15770 | . . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ) | 
| 173 | 83, 172 | remulcld 11291 | . . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ) | 
| 174 | 10, 173 | fsumrecl 15770 | . . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ) | 
| 175 | 174 | recnd 11289 | . . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℂ) | 
| 176 | 169, 175 | mulcld 11281 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℂ) | 
| 177 | 36 | recnd 11289 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ) | 
| 178 | 8 | rpne0d 13082 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ≠ 0) | 
| 179 | 176, 177,
46, 178, 47 | divdiv1d 12074 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / ((log‘𝑥) · 𝑥))) | 
| 180 | 177, 46 | mulcomd 11282 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((log‘𝑥) · 𝑥) = (𝑥 · (log‘𝑥))) | 
| 181 | 180 | oveq2d 7447 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / ((log‘𝑥) · 𝑥)) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥)))) | 
| 182 | 179, 181 | eqtrd 2777 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥)))) | 
| 183 | 169, 175,
177, 178 | div23d 12080 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))))) | 
| 184 | 183 | oveq1d 7446 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) | 
| 185 | 31, 8 | rpmulcld 13093 | . . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈
ℝ+) | 
| 186 | 185 | rpcnd 13079 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ) | 
| 187 | 185 | rpne0d 13082 | . . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0) | 
| 188 | 169, 175,
186, 187 | divassd 12078 | . . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥))) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))))) | 
| 189 | 182, 184,
188 | 3eqtr3d 2785 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))))) | 
| 190 | 165, 168,
189 | 3eqtr3d 2785 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))))) | 
| 191 | 190 | oveq1d 7446 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) − (2 · (log‘𝑥))) = ((2 · (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))) − (2 · (log‘𝑥)))) | 
| 192 | 118 | recnd 11289 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ ℂ) | 
| 193 | 192, 42, 134 | sub32d 11652 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) −
((((ψ‘𝑥) ·
(log‘𝑥)) − ((2
/ (log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) − (2 · (log‘𝑥)))) | 
| 194 | 174, 185 | rerpdivcld 13108 | . . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) ∈ ℝ) | 
| 195 | 194 | recnd 11289 | . . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) ∈ ℂ) | 
| 196 | 169, 195,
177 | subdid 11719 | . . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) = ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))) − (2 · (log‘𝑥)))) | 
| 197 | 191, 193,
196 | 3eqtr4d 2787 | . . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) −
((((ψ‘𝑥) ·
(log‘𝑥)) − ((2
/ (log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)))) | 
| 198 | 197 | mpteq2dva 5242 | . . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) −
((((ψ‘𝑥) ·
(log‘𝑥)) − ((2
/ (log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ (2 ·
((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))))) | 
| 199 | 194, 36 | resubcld 11691 | . . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)) ∈ ℝ) | 
| 200 |  | ioossre 13448 | . . . . . . 7
⊢
(1(,)+∞) ⊆ ℝ | 
| 201 |  | 2cnd 12344 | . . . . . . 7
⊢ (⊤
→ 2 ∈ ℂ) | 
| 202 |  | o1const 15656 | . . . . . . 7
⊢
(((1(,)+∞) ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦
2) ∈ 𝑂(1)) | 
| 203 | 200, 201,
202 | sylancr 587 | . . . . . 6
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ 2) ∈ 𝑂(1)) | 
| 204 |  | selbergb 27593 | . . . . . . 7
⊢
∃𝑐 ∈
ℝ+ ∀𝑦 ∈
(1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐 | 
| 205 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑐 ∈ ℝ+
∧ ∀𝑦 ∈
(1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → 𝑐 ∈ ℝ+) | 
| 206 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑐 ∈ ℝ+
∧ ∀𝑦 ∈
(1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → ∀𝑦 ∈
(1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) | 
| 207 | 205, 206 | selberg4lem1 27604 | . . . . . . . 8
⊢ ((𝑐 ∈ ℝ+
∧ ∀𝑦 ∈
(1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1)) | 
| 208 | 207 | rexlimiva 3147 | . . . . . . 7
⊢
(∃𝑐 ∈
ℝ+ ∀𝑦 ∈
(1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1)) | 
| 209 | 204, 208 | mp1i 13 | . . . . . 6
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1)) | 
| 210 | 2, 199, 203, 209 | o1mul2 15661 | . . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)))) ∈ 𝑂(1)) | 
| 211 | 198, 210 | eqeltrd 2841 | . . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) −
((((ψ‘𝑥) ·
(log‘𝑥)) − ((2
/ (log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))) ∈ 𝑂(1)) | 
| 212 | 120, 134,
211 | o1dif 15666 | . . 3
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) ↔
(𝑥 ∈ (1(,)+∞)
↦ ((((ψ‘𝑥)
· (log‘𝑥))
− ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1))) | 
| 213 | 112, 212 | mpbid 232 | . 2
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1)) | 
| 214 | 213 | mptru 1547 | 1
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((ψ‘𝑥) ·
(log‘𝑥)) − ((2
/ (log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1) |