MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg4 Structured version   Visualization version   GIF version

Theorem selberg4 26442
Description: The Selberg symmetry formula for products of three primes, instead of two. The sum here can also be written in the symmetric form Σ𝑖𝑗𝑘𝑥, Λ(𝑖)Λ(𝑗)Λ(𝑘); we eliminate one of the nested sums by using the definition of ψ(𝑥) = Σ𝑘𝑥, Λ(𝑘). This statement can thus equivalently be written ψ(𝑥)log↑2(𝑥) = 𝑖𝑗𝑘𝑥, Λ(𝑖)Λ(𝑗)Λ(𝑘) + 𝑂(𝑥log𝑥). Equation 10.4.23 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg4 (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem selberg4
Dummy variables 𝑖 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11904 . . . . . . . . . . . . 13 2 ∈ ℝ
21a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
3 elioore 12965 . . . . . . . . . . . . . 14 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
43adantl 485 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
5 eliooord 12994 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
65adantl 485 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
76simpld 498 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
84, 7rplogcld 25517 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
92, 8rerpdivcld 12659 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
10 fzfid 13546 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
11 elfznn 13141 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
1211adantl 485 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
13 vmacl 26000 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
154adantr 484 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
1615, 12nndivred 11884 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑚) ∈ ℝ)
17 chpcl 26006 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
1816, 17syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
1914, 18remulcld 10863 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) ∈ ℝ)
2012nnrpd 12626 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
2120relogcld 25511 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
2219, 21remulcld 10863 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) ∈ ℝ)
2310, 22fsumrecl 15298 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) ∈ ℝ)
249, 23remulcld 10863 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) ∈ ℝ)
2510, 19fsumrecl 15298 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) ∈ ℝ)
2624, 25resubcld 11260 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℝ)
27 1rp 12590 . . . . . . . . . . 11 1 ∈ ℝ+
2827a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
29 1red 10834 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
3029, 4, 7ltled 10980 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
314, 28, 30rpgecld 12667 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
3226, 31rerpdivcld 12659 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℝ)
3332recnd 10861 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℂ)
34 chpcl 26006 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
354, 34syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℝ)
3631relogcld 25511 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
3735, 36remulcld 10863 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
3837, 25readdcld 10862 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℝ)
3938, 31rerpdivcld 12659 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℝ)
4039recnd 10861 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℂ)
412, 36remulcld 10863 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
4241recnd 10861 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℂ)
4333, 40, 42addsubassd 11209 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) − (2 · (log‘𝑥))) = (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))))
4426recnd 10861 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℂ)
4538recnd 10861 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℂ)
464recnd 10861 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
4731rpne0d 12633 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
4844, 45, 46, 47divdird 11646 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) / 𝑥) = (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)))
4924recnd 10861 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) ∈ ℂ)
5025recnd 10861 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) ∈ ℂ)
5137recnd 10861 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
5249, 50, 51nppcan3d 11216 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) + ((ψ‘𝑥) · (log‘𝑥))))
53 elfznn 13141 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))) → 𝑛 ∈ ℕ)
5453ad2antll 729 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → 𝑛 ∈ ℕ)
55 vmacl 26000 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
5654, 55syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑛) ∈ ℝ)
5714adantrr 717 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑚) ∈ ℝ)
5820adantrr 717 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → 𝑚 ∈ ℝ+)
5958relogcld 25511 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (log‘𝑚) ∈ ℝ)
6057, 59remulcld 10863 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
6156, 60remulcld 10863 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) ∈ ℝ)
6261recnd 10861 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
634, 62fsumfldivdiag 26072 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
6414recnd 10861 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℂ)
6518recnd 10861 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℂ)
6621recnd 10861 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℂ)
6764, 65, 66mul32d 11042 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))))
6864, 66mulcld 10853 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
6968, 65mulcomd 10854 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))) = ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))))
70 chpval 26004 . . . . . . . . . . . . . . . . . 18 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
7116, 70syl 17 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
7271oveq1d 7228 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
73 fzfid 13546 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑚))) ∈ Fin)
7456anassrs 471 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℝ)
7574recnd 10861 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℂ)
7673, 68, 75fsummulc1 15349 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
7772, 76eqtrd 2777 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
7867, 69, 773eqtrd 2781 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
7978sumeq2dv 15267 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
80 fzfid 13546 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
81 elfznn 13141 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
8281adantl 485 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8382, 55syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
8483recnd 10861 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
85 elfznn 13141 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
8685adantl 485 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
8786, 13syl 17 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈ ℝ)
8886nnrpd 12626 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
8988relogcld 25511 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ)
9087, 89remulcld 10863 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
9190recnd 10861 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
9280, 84, 91fsummulc2 15348 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
9392sumeq2dv 15267 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
9463, 79, 933eqtr4d 2787 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))
9594oveq2d 7229 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))))
9695oveq1d 7228 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) + ((ψ‘𝑥) · (log‘𝑥))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))))
9752, 96eqtrd 2777 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))))
9897oveq1d 7228 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) / 𝑥) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
9948, 98eqtr3d 2779 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
10099oveq1d 7228 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) − (2 · (log‘𝑥))) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))))
10143, 100eqtr3d 2779 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))))
102101mpteq2dva 5150 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))))) = (𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))))
10339, 41resubcld 11260 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
104 selberg3lem2 26439 . . . . . 6 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) ∈ 𝑂(1)
105104a1i 11 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) ∈ 𝑂(1))
10631ex 416 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
107106ssrdv 3907 . . . . . 6 (⊤ → (1(,)+∞) ⊆ ℝ+)
108 selberg2 26432 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
109108a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
110107, 109o1res2 15124 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
11132, 103, 105, 110o1add2 15185 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))))) ∈ 𝑂(1))
112102, 111eqeltrrd 2839 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
11380, 90fsumrecl 15298 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
11483, 113remulcld 10863 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℝ)
11510, 114fsumrecl 15298 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℝ)
1169, 115remulcld 10863 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) ∈ ℝ)
117116, 37readdcld 10862 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
118117, 31rerpdivcld 12659 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ ℝ)
119118, 41resubcld 11260 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
120119recnd 10861 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
1214adantr 484 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
122121, 82nndivred 11884 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
123122adantr 484 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑥 / 𝑛) ∈ ℝ)
124123, 86nndivred 11884 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ)
125 chpcl 26006 . . . . . . . . . . . . 13 (((𝑥 / 𝑛) / 𝑚) ∈ ℝ → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
126124, 125syl 17 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
12787, 126remulcld 10863 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ)
12880, 127fsumrecl 15298 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ)
12983, 128remulcld 10863 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ)
13010, 129fsumrecl 15298 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ)
1319, 130remulcld 10863 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ)
13237, 131resubcld 11260 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℝ)
133132, 31rerpdivcld 12659 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) ∈ ℝ)
134133recnd 10861 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) ∈ ℂ)
135116recnd 10861 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) ∈ ℂ)
136131recnd 10861 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℂ)
13751, 135, 136pnncand 11228 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
138135, 51addcomd 11034 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) = (((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))))
139138oveq1d 7228 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))))
14087recnd 10861 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈ ℂ)
14189recnd 10861 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℂ)
142126recnd 10861 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℂ)
143140, 141, 142adddid 10857 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))
144143sumeq2dv 15267 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))
145127recnd 10861 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℂ)
14680, 91, 145fsumadd 15304 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))
147144, 146eqtrd 2777 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))
148147oveq2d 7229 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
149113recnd 10861 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
150128recnd 10861 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℂ)
15184, 149, 150adddid 10857 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
152148, 151eqtrd 2777 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
153152sumeq2dv 15267 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
154114recnd 10861 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
155129recnd 10861 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℂ)
15610, 154, 155fsumadd 15304 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
157153, 156eqtrd 2777 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
158157oveq2d 7229 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
1599recnd 10861 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
160115recnd 10861 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
161130recnd 10861 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℂ)
162159, 160, 161adddid 10857 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
163158, 162eqtrd 2777 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
164137, 139, 1633eqtr4d 2787 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
165164oveq1d 7228 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) / 𝑥) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))
166117recnd 10861 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℂ)
16751, 136subcld 11189 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℂ)
168166, 167, 46, 47divsubdird 11647 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) / 𝑥) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)))
169 2cnd 11908 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
17089, 126readdcld 10862 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ)
17187, 170remulcld 10863 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ)
17280, 171fsumrecl 15298 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ)
17383, 172remulcld 10863 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ)
17410, 173fsumrecl 15298 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ)
175174recnd 10861 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℂ)
176169, 175mulcld 10853 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℂ)
17736recnd 10861 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
1788rpne0d 12633 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
179176, 177, 46, 178, 47divdiv1d 11639 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / ((log‘𝑥) · 𝑥)))
180177, 46mulcomd 10854 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) · 𝑥) = (𝑥 · (log‘𝑥)))
181180oveq2d 7229 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / ((log‘𝑥) · 𝑥)) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥))))
182179, 181eqtrd 2777 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥))))
183169, 175, 177, 178div23d 11645 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
184183oveq1d 7228 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))
18531, 8rpmulcld 12644 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
186185rpcnd 12630 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
187185rpne0d 12633 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
188169, 175, 186, 187divassd 11643 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥))) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))))
189182, 184, 1883eqtr3d 2785 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))))
190165, 168, 1893eqtr3d 2785 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))))
191190oveq1d 7228 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) − (2 · (log‘𝑥))) = ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))) − (2 · (log‘𝑥))))
192118recnd 10861 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ ℂ)
193192, 42, 134sub32d 11221 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) − (2 · (log‘𝑥))))
194174, 185rerpdivcld 12659 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
195194recnd 10861 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
196169, 195, 177subdid 11288 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) = ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))) − (2 · (log‘𝑥))))
197191, 193, 1963eqtr4d 2787 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))))
198197mpteq2dva 5150 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)))))
199194, 36resubcld 11260 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)) ∈ ℝ)
200 ioossre 12996 . . . . . . 7 (1(,)+∞) ⊆ ℝ
201 2cnd 11908 . . . . . . 7 (⊤ → 2 ∈ ℂ)
202 o1const 15181 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
203200, 201, 202sylancr 590 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
204 selbergb 26430 . . . . . . 7 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐
205 simpl 486 . . . . . . . . 9 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → 𝑐 ∈ ℝ+)
206 simpr 488 . . . . . . . . 9 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐)
207205, 206selberg4lem1 26441 . . . . . . . 8 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1))
208207rexlimiva 3200 . . . . . . 7 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1))
209204, 208mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1))
2102, 199, 203, 209o1mul2 15186 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)))) ∈ 𝑂(1))
211198, 210eqeltrd 2838 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))) ∈ 𝑂(1))
212120, 134, 211o1dif 15191 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1)))
213112, 212mpbid 235 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1))
214213mptru 1550 1 (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wtru 1544  wcel 2110  wral 3061  wrex 3062  wss 3866   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  1c1 10730   + caddc 10732   · cmul 10734  +∞cpnf 10864   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  +crp 12586  (,)cioo 12935  [,)cico 12937  ...cfz 13095  cfl 13365  abscabs 14797  𝑂(1)co1 15047  Σcsu 15249  logclog 25443  Λcvma 25974  ψcchp 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-o1 15051  df-lo1 15052  df-sum 15250  df-ef 15629  df-e 15630  df-sin 15631  df-cos 15632  df-tan 15633  df-pi 15634  df-dvds 15816  df-gcd 16054  df-prm 16229  df-pc 16390  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-ulm 25269  df-log 25445  df-cxp 25446  df-atan 25750  df-em 25875  df-cht 25979  df-vma 25980  df-chp 25981  df-ppi 25982  df-mu 25983
This theorem is referenced by:  selberg4r  26451
  Copyright terms: Public domain W3C validator