MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg4 Structured version   Visualization version   GIF version

Theorem selberg4 27472
Description: The Selberg symmetry formula for products of three primes, instead of two. The sum here can also be written in the symmetric form Σ𝑖𝑗𝑘𝑥, Λ(𝑖)Λ(𝑗)Λ(𝑘); we eliminate one of the nested sums by using the definition of ψ(𝑥) = Σ𝑘𝑥, Λ(𝑘). This statement can thus equivalently be written ψ(𝑥)log↑2(𝑥) = 𝑖𝑗𝑘𝑥, Λ(𝑖)Λ(𝑗)Λ(𝑘) + 𝑂(𝑥log𝑥). Equation 10.4.23 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg4 (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem selberg4
Dummy variables 𝑖 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12260 . . . . . . . . . . . . 13 2 ∈ ℝ
21a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
3 elioore 13336 . . . . . . . . . . . . . 14 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
43adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
5 eliooord 13366 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
65adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
76simpld 494 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
84, 7rplogcld 26538 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
92, 8rerpdivcld 13026 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
10 fzfid 13938 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
11 elfznn 13514 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
1211adantl 481 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
13 vmacl 27028 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
154adantr 480 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
1615, 12nndivred 12240 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑚) ∈ ℝ)
17 chpcl 27034 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
1816, 17syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
1914, 18remulcld 11204 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) ∈ ℝ)
2012nnrpd 12993 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
2120relogcld 26532 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
2219, 21remulcld 11204 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) ∈ ℝ)
2310, 22fsumrecl 15700 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) ∈ ℝ)
249, 23remulcld 11204 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) ∈ ℝ)
2510, 19fsumrecl 15700 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) ∈ ℝ)
2624, 25resubcld 11606 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℝ)
27 1rp 12955 . . . . . . . . . . 11 1 ∈ ℝ+
2827a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
29 1red 11175 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
3029, 4, 7ltled 11322 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
314, 28, 30rpgecld 13034 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
3226, 31rerpdivcld 13026 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℝ)
3332recnd 11202 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℂ)
34 chpcl 27034 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
354, 34syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℝ)
3631relogcld 26532 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
3735, 36remulcld 11204 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
3837, 25readdcld 11203 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℝ)
3938, 31rerpdivcld 13026 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℝ)
4039recnd 11202 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) ∈ ℂ)
412, 36remulcld 11204 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
4241recnd 11202 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℂ)
4333, 40, 42addsubassd 11553 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) − (2 · (log‘𝑥))) = (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))))
4426recnd 11202 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℂ)
4538recnd 11202 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) ∈ ℂ)
464recnd 11202 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
4731rpne0d 13000 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
4844, 45, 46, 47divdird 11996 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) / 𝑥) = (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)))
4924recnd 11202 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) ∈ ℂ)
5025recnd 11202 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) ∈ ℂ)
5137recnd 11202 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
5249, 50, 51nppcan3d 11560 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) + ((ψ‘𝑥) · (log‘𝑥))))
53 elfznn 13514 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))) → 𝑛 ∈ ℕ)
5453ad2antll 729 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → 𝑛 ∈ ℕ)
55 vmacl 27028 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
5654, 55syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑛) ∈ ℝ)
5714adantrr 717 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑚) ∈ ℝ)
5820adantrr 717 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → 𝑚 ∈ ℝ+)
5958relogcld 26532 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (log‘𝑚) ∈ ℝ)
6057, 59remulcld 11204 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
6156, 60remulcld 11204 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) ∈ ℝ)
6261recnd 11202 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
634, 62fsumfldivdiag 27100 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
6414recnd 11202 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℂ)
6518recnd 11202 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℂ)
6621recnd 11202 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℂ)
6764, 65, 66mul32d 11384 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))))
6864, 66mulcld 11194 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
6968, 65mulcomd 11195 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))) = ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))))
70 chpval 27032 . . . . . . . . . . . . . . . . . 18 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
7116, 70syl 17 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
7271oveq1d 7402 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
73 fzfid 13938 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑚))) ∈ Fin)
7456anassrs 467 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℝ)
7574recnd 11202 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℂ)
7673, 68, 75fsummulc1 15751 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
7772, 76eqtrd 2764 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
7867, 69, 773eqtrd 2768 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
7978sumeq2dv 15668 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
80 fzfid 13938 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
81 elfznn 13514 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
8281adantl 481 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8382, 55syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
8483recnd 11202 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
85 elfznn 13514 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
8685adantl 481 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
8786, 13syl 17 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈ ℝ)
8886nnrpd 12993 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
8988relogcld 26532 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ)
9087, 89remulcld 11204 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
9190recnd 11202 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
9280, 84, 91fsummulc2 15750 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
9392sumeq2dv 15668 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
9463, 79, 933eqtr4d 2774 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))
9594oveq2d 7403 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))))
9695oveq1d 7402 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) + ((ψ‘𝑥) · (log‘𝑥))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))))
9752, 96eqtrd 2764 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))))
9897oveq1d 7402 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) + (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))) / 𝑥) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
9948, 98eqtr3d 2766 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
10099oveq1d 7402 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) − (2 · (log‘𝑥))) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))))
10143, 100eqtr3d 2766 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))))
102101mpteq2dva 5200 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))))) = (𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))))
10339, 41resubcld 11606 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
104 selberg3lem2 27469 . . . . . 6 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) ∈ 𝑂(1)
105104a1i 11 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥)) ∈ 𝑂(1))
10631ex 412 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
107106ssrdv 3952 . . . . . 6 (⊤ → (1(,)+∞) ⊆ ℝ+)
108 selberg2 27462 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
109108a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
110107, 109o1res2 15529 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
11132, 103, 105, 110o1add2 15590 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) + (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) / 𝑥) − (2 · (log‘𝑥))))) ∈ 𝑂(1))
112102, 111eqeltrrd 2829 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
11380, 90fsumrecl 15700 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
11483, 113remulcld 11204 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℝ)
11510, 114fsumrecl 15700 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℝ)
1169, 115remulcld 11204 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) ∈ ℝ)
117116, 37readdcld 11203 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
118117, 31rerpdivcld 13026 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ ℝ)
119118, 41resubcld 11606 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
120119recnd 11202 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
1214adantr 480 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
122121, 82nndivred 12240 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
123122adantr 480 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑥 / 𝑛) ∈ ℝ)
124123, 86nndivred 12240 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ)
125 chpcl 27034 . . . . . . . . . . . . 13 (((𝑥 / 𝑛) / 𝑚) ∈ ℝ → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
126124, 125syl 17 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
12787, 126remulcld 11204 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ)
12880, 127fsumrecl 15700 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ)
12983, 128remulcld 11204 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ)
13010, 129fsumrecl 15700 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ)
1319, 130remulcld 11204 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ)
13237, 131resubcld 11606 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℝ)
133132, 31rerpdivcld 13026 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) ∈ ℝ)
134133recnd 11202 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) ∈ ℂ)
135116recnd 11202 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) ∈ ℂ)
136131recnd 11202 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℂ)
13751, 135, 136pnncand 11572 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
138135, 51addcomd 11376 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) = (((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))))
139138oveq1d 7402 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))))
14087recnd 11202 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈ ℂ)
14189recnd 11202 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℂ)
142126recnd 11202 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (ψ‘((𝑥 / 𝑛) / 𝑚)) ∈ ℂ)
143140, 141, 142adddid 11198 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))
144143sumeq2dv 15668 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))
145127recnd 11202 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℂ)
14680, 91, 145fsumadd 15706 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((Λ‘𝑚) · (log‘𝑚)) + ((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))
147144, 146eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))
148147oveq2d 7403 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
149113recnd 11202 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
150128recnd 11202 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℂ)
15184, 149, 150adddid 11198 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
152148, 151eqtrd 2764 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
153152sumeq2dv 15668 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
154114recnd 11202 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
155129recnd 11202 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℂ)
15610, 154, 155fsumadd 15706 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
157153, 156eqtrd 2764 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))
158157oveq2d 7403 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
1599recnd 11202 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
160115recnd 11202 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
161130recnd 11202 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℂ)
162159, 160, 161adddid 11198 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
163158, 162eqtrd 2764 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
164137, 139, 1633eqtr4d 2774 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
165164oveq1d 7402 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) / 𝑥) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))
166117recnd 11202 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℂ)
16751, 136subcld 11533 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℂ)
168166, 167, 46, 47divsubdird 11997 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) − (((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚))))))) / 𝑥) = (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)))
169 2cnd 12264 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
17089, 126readdcld 11203 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))) ∈ ℝ)
17187, 170remulcld 11204 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ)
17280, 171fsumrecl 15700 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))) ∈ ℝ)
17383, 172remulcld 11204 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ)
17410, 173fsumrecl 15700 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℝ)
175174recnd 11202 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) ∈ ℂ)
176169, 175mulcld 11194 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) ∈ ℂ)
17736recnd 11202 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
1788rpne0d 13000 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
179176, 177, 46, 178, 47divdiv1d 11989 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / ((log‘𝑥) · 𝑥)))
180177, 46mulcomd 11195 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) · 𝑥) = (𝑥 · (log‘𝑥)))
181180oveq2d 7403 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / ((log‘𝑥) · 𝑥)) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥))))
182179, 181eqtrd 2764 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥))))
183169, 175, 177, 178div23d 11995 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))))
184183oveq1d 7402 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (log‘𝑥)) / 𝑥) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))
18531, 8rpmulcld 13011 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
186185rpcnd 12997 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
187185rpne0d 13000 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
188169, 175, 186, 187divassd 11993 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / (𝑥 · (log‘𝑥))) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))))
189182, 184, 1883eqtr3d 2772 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))))
190165, 168, 1893eqtr3d 2772 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))))
191190oveq1d 7402 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) − (2 · (log‘𝑥))) = ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))) − (2 · (log‘𝑥))))
192118recnd 11202 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) ∈ ℂ)
193192, 42, 134sub32d 11565 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) − (2 · (log‘𝑥))))
194174, 185rerpdivcld 13026 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
195194recnd 11202 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
196169, 195, 177subdid 11634 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) = ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥)))) − (2 · (log‘𝑥))))
197191, 193, 1963eqtr4d 2774 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) = (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))))
198197mpteq2dva 5200 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)))))
199194, 36resubcld 11606 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)) ∈ ℝ)
200 ioossre 13368 . . . . . . 7 (1(,)+∞) ⊆ ℝ
201 2cnd 12264 . . . . . . 7 (⊤ → 2 ∈ ℂ)
202 o1const 15586 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
203200, 201, 202sylancr 587 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
204 selbergb 27460 . . . . . . 7 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐
205 simpl 482 . . . . . . . . 9 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → 𝑐 ∈ ℝ+)
206 simpr 484 . . . . . . . . 9 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐)
207205, 206selberg4lem1 27471 . . . . . . . 8 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1))
208207rexlimiva 3126 . . . . . . 7 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1))
209204, 208mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1))
2102, 199, 203, 209o1mul2 15591 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥)))) ∈ 𝑂(1))
211198, 210eqeltrd 2828 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥))) − ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥))) ∈ 𝑂(1))
212120, 134, 211o1dif 15596 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))) + ((ψ‘𝑥) · (log‘𝑥))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1)))
213112, 212mpbid 232 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1))
214213mptru 1547 1 (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  +crp 12951  (,)cioo 13306  [,)cico 13308  ...cfz 13468  cfl 13752  abscabs 15200  𝑂(1)co1 15452  Σcsu 15652  logclog 26463  Λcvma 27002  ψcchp 27003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466  df-atan 26777  df-em 26903  df-cht 27007  df-vma 27008  df-chp 27009  df-ppi 27010  df-mu 27011
This theorem is referenced by:  selberg4r  27481
  Copyright terms: Public domain W3C validator