MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bnd Structured version   Visualization version   GIF version

Theorem pntrlog2bnd 26489
Description: A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
Hypothesis
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrlog2bnd ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Distinct variable groups:   𝑥,𝑛,𝑐,𝑅   𝑎,𝑐,𝑛,𝑥,𝐴
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrlog2bnd
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13021 . . 3 (1(,)+∞) ⊆ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1(,)+∞) ⊆ ℝ)
3 1red 10859 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
42sselda 3916 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
5 1rp 12615 . . . . . . . . . 10 1 ∈ ℝ+
65a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
7 1red 10859 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
8 eliooord 13019 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
98adantl 485 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
109simpld 498 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
117, 4, 10ltled 11005 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
124, 6, 11rpgecld 12692 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
13 pntpbnd.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1413pntrf 26468 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1514ffvelrni 6922 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1716recnd 10886 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1817abscld 15025 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1912relogcld 25535 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
2018, 19remulcld 10888 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
21 2re 11929 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
234, 10rplogcld 25541 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2422, 23rerpdivcld 12684 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
25 fzfid 13571 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
2612adantr 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑥 ∈ ℝ+)
27 elfznn 13166 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴))) → 𝑛 ∈ ℕ)
2827adantl 485 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
2928nnrpd 12651 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 12670 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑥 / 𝑛) ∈ ℝ+)
3114ffvelrni 6922 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 10886 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 15025 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 25535 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
3634, 35remulcld 10888 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3725, 36fsumrecl 15323 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3824, 37remulcld 10888 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3920, 38resubcld 11285 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
4039, 12rerpdivcld 12684 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
4113pntrmax 26469 . . 3 𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐
42 eqid 2738 . . . . 5 (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
43 eqid 2738 . . . . 5 (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
44 simprl 771 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝑐 ∈ ℝ+)
45 simprr 773 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)
46 simpll 767 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝐴 ∈ ℝ)
47 simplr 769 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 1 ≤ 𝐴)
4842, 13, 43, 44, 45, 46, 47pntrlog2bndlem6 26488 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
4948rexlimdvaa 3212 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)))
5041, 49mpi 20 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
51 simprl 771 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
52 chpcl 26030 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
5351, 52syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (ψ‘𝑦) ∈ ℝ)
5453, 51readdcld 10887 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
555a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
56 simprr 773 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
5751, 55, 56rpgecld 12692 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
5857relogcld 25535 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
5954, 58remulcld 10888 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6040adantr 484 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
6153ad2ant2r 747 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℝ)
62 simprll 779 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
6361, 62readdcld 10887 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
6457ad2ant2r 747 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
6564relogcld 25535 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
6663, 65remulcld 10888 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6712adantr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
6866, 67rerpdivcld 12684 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ∈ ℝ)
6916adantr 484 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℝ)
7069recnd 10886 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℂ)
7170abscld 15025 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ∈ ℝ)
7267relogcld 25535 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
7371, 72remulcld 10888 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
7424adantr 484 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 / (log‘𝑥)) ∈ ℝ)
7537adantr 484 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
7674, 75remulcld 10888 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
7773, 76resubcld 11285 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
7821a1i 11 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
794adantr 484 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
8010adantr 484 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 < 𝑥)
8179, 80rplogcld 25541 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ+)
82 2rp 12616 . . . . . . . . . 10 2 ∈ ℝ+
8382a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ+)
8483rpge0d 12657 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2)
8578, 81, 84divge0d 12693 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 / (log‘𝑥)))
86 fzfid 13571 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
8736adantlr 715 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
8833adantlr 715 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
8988abscld 15025 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
9029adantlr 715 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
9190relogcld 25535 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
9288absge0d 15033 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
9390rpred 12653 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ)
9427adantl 485 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
9594nnge1d 11903 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 1 ≤ 𝑛)
9693, 95logge0d 25542 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (log‘𝑛))
9789, 91, 92, 96mulge0d 11434 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9886, 87, 97fsumge0 15384 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9974, 75, 85, 98mulge0d 11434 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
10073, 76subge02d 11449 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ↔ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥))))
10199, 100mpbid 235 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥)))
10270absge0d 15033 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (abs‘(𝑅𝑥)))
10381rpge0d 12657 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
104 chpcl 26030 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
10579, 104syl 17 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℝ)
106105, 79readdcld 10887 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ∈ ℝ)
10713pntrval 26467 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
10867, 107syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
109108fveq2d 6740 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) = (abs‘((ψ‘𝑥) − 𝑥)))
110105recnd 10886 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℂ)
11179recnd 10886 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
112110, 111abs2dif2d 15047 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((abs‘(ψ‘𝑥)) + (abs‘𝑥)))
113 chpge0 26032 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
11479, 113syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑥))
115105, 114absidd 15011 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(ψ‘𝑥)) = (ψ‘𝑥))
11667rpge0d 12657 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑥)
11779, 116absidd 15011 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝑥) = 𝑥)
118115, 117oveq12d 7250 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(ψ‘𝑥)) + (abs‘𝑥)) = ((ψ‘𝑥) + 𝑥))
119112, 118breqtrd 5094 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
120109, 119eqbrtrd 5090 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
121 simprr 773 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
12279, 62, 121ltled 11005 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
123 chpwordi 26063 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
12479, 62, 122, 123syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ≤ (ψ‘𝑦))
125105, 79, 61, 62, 124, 122le2addd 11476 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ≤ ((ψ‘𝑦) + 𝑦))
12671, 106, 63, 120, 125letrd 11014 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑦) + 𝑦))
12767, 64logled 25539 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
128122, 127mpbid 235 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
12971, 63, 72, 65, 102, 103, 126, 128lemul12ad 11799 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13077, 73, 66, 101, 129letrd 11014 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13177, 66, 67, 130lediv1dd 12711 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥))
1325a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℝ+)
133 chpge0 26032 . . . . . . . 8 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
13462, 133syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑦))
13564rpge0d 12657 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑦)
13661, 62, 134, 135addge0d 11433 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((ψ‘𝑦) + 𝑦))
137 simprlr 780 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑦)
13862, 137logge0d 25542 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑦))
13963, 65, 136, 138mulge0d 11434 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14011adantr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
141132, 67, 66, 139, 140lediv2ad 12675 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1))
14261recnd 10886 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℂ)
14362recnd 10886 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
144142, 143addcld 10877 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℂ)
14565recnd 10886 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℂ)
146144, 145mulcld 10878 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℂ)
147146div1d 11625 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1) = (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
148141, 147breqtrd 5094 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14960, 68, 66, 131, 148letrd 11014 . 2 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
1502, 3, 40, 50, 59, 149lo1bddrp 15111 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  wral 3062  wrex 3063  wss 3881  ifcif 4454   class class class wbr 5068  cmpt 5150  cfv 6398  (class class class)co 7232  cc 10752  cr 10753  0cc0 10754  1c1 10755   + caddc 10757   · cmul 10759  +∞cpnf 10889   < clt 10892  cle 10893  cmin 11087   / cdiv 11514  cn 11855  2c2 11910  +crp 12611  (,)cioo 12960  ...cfz 13120  cfl 13390  abscabs 14822  ≤𝑂(1)clo1 15073  Σcsu 15274  logclog 25467  Λcvma 25998  ψcchp 25999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-inf2 9281  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832  ax-addf 10833  ax-mulf 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-iin 4922  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-of 7488  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-2o 8224  df-oadd 8227  df-er 8412  df-map 8531  df-pm 8532  df-ixp 8600  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-fsupp 9011  df-fi 9052  df-sup 9083  df-inf 9084  df-oi 9151  df-dju 9542  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-xnn0 12188  df-z 12202  df-dec 12319  df-uz 12464  df-q 12570  df-rp 12612  df-xneg 12729  df-xadd 12730  df-xmul 12731  df-ioo 12964  df-ioc 12965  df-ico 12966  df-icc 12967  df-fz 13121  df-fzo 13264  df-fl 13392  df-mod 13468  df-seq 13600  df-exp 13661  df-fac 13865  df-bc 13894  df-hash 13922  df-shft 14655  df-cj 14687  df-re 14688  df-im 14689  df-sqrt 14823  df-abs 14824  df-limsup 15057  df-clim 15074  df-rlim 15075  df-o1 15076  df-lo1 15077  df-sum 15275  df-ef 15654  df-e 15655  df-sin 15656  df-cos 15657  df-tan 15658  df-pi 15659  df-dvds 15841  df-gcd 16079  df-prm 16254  df-pc 16415  df-struct 16725  df-sets 16742  df-slot 16760  df-ndx 16770  df-base 16786  df-ress 16810  df-plusg 16840  df-mulr 16841  df-starv 16842  df-sca 16843  df-vsca 16844  df-ip 16845  df-tset 16846  df-ple 16847  df-ds 16849  df-unif 16850  df-hom 16851  df-cco 16852  df-rest 16952  df-topn 16953  df-0g 16971  df-gsum 16972  df-topgen 16973  df-pt 16974  df-prds 16977  df-xrs 17032  df-qtop 17037  df-imas 17038  df-xps 17040  df-mre 17114  df-mrc 17115  df-acs 17117  df-mgm 18139  df-sgrp 18188  df-mnd 18199  df-submnd 18244  df-mulg 18514  df-cntz 18736  df-cmn 19197  df-psmet 20380  df-xmet 20381  df-met 20382  df-bl 20383  df-mopn 20384  df-fbas 20385  df-fg 20386  df-cnfld 20389  df-top 21815  df-topon 21832  df-topsp 21854  df-bases 21867  df-cld 21940  df-ntr 21941  df-cls 21942  df-nei 22019  df-lp 22057  df-perf 22058  df-cn 22148  df-cnp 22149  df-haus 22236  df-cmp 22308  df-tx 22483  df-hmeo 22676  df-fil 22767  df-fm 22859  df-flim 22860  df-flf 22861  df-xms 23242  df-ms 23243  df-tms 23244  df-cncf 23799  df-limc 24787  df-dv 24788  df-ulm 25293  df-log 25469  df-cxp 25470  df-atan 25774  df-em 25899  df-cht 26003  df-vma 26004  df-chp 26005  df-ppi 26006  df-mu 26007
This theorem is referenced by:  pntlemp  26515
  Copyright terms: Public domain W3C validator