MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bnd Structured version   Visualization version   GIF version

Theorem pntrlog2bnd 27552
Description: A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
Hypothesis
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrlog2bnd ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Distinct variable groups:   𝑥,𝑛,𝑐,𝑅   𝑎,𝑐,𝑛,𝑥,𝐴
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrlog2bnd
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13429 . . 3 (1(,)+∞) ⊆ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1(,)+∞) ⊆ ℝ)
3 1red 11241 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
42sselda 3963 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
5 1rp 13017 . . . . . . . . . 10 1 ∈ ℝ+
65a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
7 1red 11241 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
8 eliooord 13427 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
98adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
109simpld 494 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
117, 4, 10ltled 11388 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
124, 6, 11rpgecld 13095 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
13 pntpbnd.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1413pntrf 27531 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1514ffvelcdmi 7078 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1716recnd 11268 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1817abscld 15460 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1912relogcld 26589 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
2018, 19remulcld 11270 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
21 2re 12319 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
234, 10rplogcld 26595 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2422, 23rerpdivcld 13087 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
25 fzfid 13996 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
2612adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑥 ∈ ℝ+)
27 elfznn 13575 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴))) → 𝑛 ∈ ℕ)
2827adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
2928nnrpd 13054 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 13073 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑥 / 𝑛) ∈ ℝ+)
3114ffvelcdmi 7078 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 11268 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 15460 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 26589 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
3634, 35remulcld 11270 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3725, 36fsumrecl 15755 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3824, 37remulcld 11270 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3920, 38resubcld 11670 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
4039, 12rerpdivcld 13087 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
4113pntrmax 27532 . . 3 𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐
42 eqid 2736 . . . . 5 (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
43 eqid 2736 . . . . 5 (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
44 simprl 770 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝑐 ∈ ℝ+)
45 simprr 772 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)
46 simpll 766 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝐴 ∈ ℝ)
47 simplr 768 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 1 ≤ 𝐴)
4842, 13, 43, 44, 45, 46, 47pntrlog2bndlem6 27551 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
4948rexlimdvaa 3143 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)))
5041, 49mpi 20 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
51 simprl 770 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
52 chpcl 27091 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
5351, 52syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (ψ‘𝑦) ∈ ℝ)
5453, 51readdcld 11269 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
555a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
56 simprr 772 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
5751, 55, 56rpgecld 13095 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
5857relogcld 26589 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
5954, 58remulcld 11270 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6040adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
6153ad2ant2r 747 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℝ)
62 simprll 778 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
6361, 62readdcld 11269 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
6457ad2ant2r 747 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
6564relogcld 26589 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
6663, 65remulcld 11270 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6712adantr 480 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
6866, 67rerpdivcld 13087 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ∈ ℝ)
6916adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℝ)
7069recnd 11268 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℂ)
7170abscld 15460 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ∈ ℝ)
7267relogcld 26589 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
7371, 72remulcld 11270 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
7424adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 / (log‘𝑥)) ∈ ℝ)
7537adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
7674, 75remulcld 11270 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
7773, 76resubcld 11670 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
7821a1i 11 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
794adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
8010adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 < 𝑥)
8179, 80rplogcld 26595 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ+)
82 2rp 13018 . . . . . . . . . 10 2 ∈ ℝ+
8382a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ+)
8483rpge0d 13060 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2)
8578, 81, 84divge0d 13096 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 / (log‘𝑥)))
86 fzfid 13996 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
8736adantlr 715 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
8833adantlr 715 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
8988abscld 15460 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
9029adantlr 715 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
9190relogcld 26589 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
9288absge0d 15468 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
9390rpred 13056 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ)
9427adantl 481 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
9594nnge1d 12293 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 1 ≤ 𝑛)
9693, 95logge0d 26596 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (log‘𝑛))
9789, 91, 92, 96mulge0d 11819 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9886, 87, 97fsumge0 15816 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9974, 75, 85, 98mulge0d 11819 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
10073, 76subge02d 11834 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ↔ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥))))
10199, 100mpbid 232 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥)))
10270absge0d 15468 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (abs‘(𝑅𝑥)))
10381rpge0d 13060 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
104 chpcl 27091 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
10579, 104syl 17 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℝ)
106105, 79readdcld 11269 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ∈ ℝ)
10713pntrval 27530 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
10867, 107syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
109108fveq2d 6885 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) = (abs‘((ψ‘𝑥) − 𝑥)))
110105recnd 11268 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℂ)
11179recnd 11268 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
112110, 111abs2dif2d 15482 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((abs‘(ψ‘𝑥)) + (abs‘𝑥)))
113 chpge0 27093 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
11479, 113syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑥))
115105, 114absidd 15446 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(ψ‘𝑥)) = (ψ‘𝑥))
11667rpge0d 13060 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑥)
11779, 116absidd 15446 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝑥) = 𝑥)
118115, 117oveq12d 7428 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(ψ‘𝑥)) + (abs‘𝑥)) = ((ψ‘𝑥) + 𝑥))
119112, 118breqtrd 5150 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
120109, 119eqbrtrd 5146 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
121 simprr 772 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
12279, 62, 121ltled 11388 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
123 chpwordi 27124 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
12479, 62, 122, 123syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ≤ (ψ‘𝑦))
125105, 79, 61, 62, 124, 122le2addd 11861 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ≤ ((ψ‘𝑦) + 𝑦))
12671, 106, 63, 120, 125letrd 11397 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑦) + 𝑦))
12767, 64logled 26593 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
128122, 127mpbid 232 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
12971, 63, 72, 65, 102, 103, 126, 128lemul12ad 12189 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13077, 73, 66, 101, 129letrd 11397 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13177, 66, 67, 130lediv1dd 13114 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥))
1325a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℝ+)
133 chpge0 27093 . . . . . . . 8 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
13462, 133syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑦))
13564rpge0d 13060 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑦)
13661, 62, 134, 135addge0d 11818 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((ψ‘𝑦) + 𝑦))
137 simprlr 779 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑦)
13862, 137logge0d 26596 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑦))
13963, 65, 136, 138mulge0d 11819 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14011adantr 480 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
141132, 67, 66, 139, 140lediv2ad 13078 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1))
14261recnd 11268 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℂ)
14362recnd 11268 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
144142, 143addcld 11259 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℂ)
14565recnd 11268 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℂ)
146144, 145mulcld 11260 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℂ)
147146div1d 12014 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1) = (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
148141, 147breqtrd 5150 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14960, 68, 66, 131, 148letrd 11397 . 2 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
1502, 3, 40, 50, 59, 149lo1bddrp 15546 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931  ifcif 4505   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  +crp 13013  (,)cioo 13367  ...cfz 13529  cfl 13812  abscabs 15258  ≤𝑂(1)clo1 15508  Σcsu 15707  logclog 26520  Λcvma 27059  ψcchp 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-o1 15511  df-lo1 15512  df-sum 15708  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-ulm 26343  df-log 26522  df-cxp 26523  df-atan 26834  df-em 26960  df-cht 27064  df-vma 27065  df-chp 27066  df-ppi 27067  df-mu 27068
This theorem is referenced by:  pntlemp  27578
  Copyright terms: Public domain W3C validator