MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3r Structured version   Visualization version   GIF version

Theorem selberg3r 27627
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of [Shapiro], p. 429. (Contributed by Mario Carneiro, 30-May-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
selberg3r (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1)
Distinct variable groups:   𝑛,𝑎,𝑥   𝑅,𝑛,𝑥
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem selberg3r
StepHypRef Expression
1 elioore 13413 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 13035 . . . . . . . . . . . . 13 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 11259 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13442 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11406 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13113 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
1110relogcld 26679 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1211recnd 11286 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
13122timesd 12506 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) = ((log‘𝑥) + (log‘𝑥)))
1413oveq2d 7446 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥))) = (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥))))
15 chpcl 27181 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
162, 15syl 17 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℝ)
1716, 11remulcld 11288 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
18 2re 12337 . . . . . . . . . . . . . 14 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
202, 8rplogcld 26685 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2119, 20rerpdivcld 13105 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
22 fzfid 14010 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
23 elfznn 13589 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2423adantl 481 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
25 vmacl 27175 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
2624, 25syl 17 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
272adantr 480 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
2827, 24nndivred 12317 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
29 chpcl 27181 . . . . . . . . . . . . . . . 16 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
3028, 29syl 17 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
3126, 30remulcld 11288 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
3224nnrpd 13072 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
3332relogcld 26679 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
3431, 33remulcld 11288 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3522, 34fsumrecl 15766 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3621, 35remulcld 11288 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3717, 36readdcld 11287 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
3837, 10rerpdivcld 13105 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
3938recnd 11286 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℂ)
4039, 12, 12subsub4d 11648 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥))))
4114, 40eqtr4d 2777 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥))) = ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)))
4241oveq1d 7445 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥))) = (((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥))))
4339, 12subcld 11617 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)) ∈ ℂ)
44 2cn 12338 . . . . . . . . 9 2 ∈ ℂ
4544a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
4620rpne0d 13079 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
4745, 12, 46divcld 12040 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
4826, 24nndivred 12317 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4948, 33remulcld 11288 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (log‘𝑛)) ∈ ℝ)
5022, 49fsumrecl 15766 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) ∈ ℝ)
5150recnd 11286 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) ∈ ℂ)
5247, 51mulcld 11278 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) ∈ ℂ)
5343, 52, 12nnncan2d 11652 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥))) = ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))))
54 pntrval.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
5554pntrf 27621 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
5655ffvelcdmi 7102 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
5710, 56syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
5857recnd 11286 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
5958, 12mulcld 11278 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) ∈ ℂ)
6036recnd 11286 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
6159, 60addcld 11277 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ)
622recnd 11286 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
6362, 52mulcld 11278 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) ∈ ℂ)
6410rpne0d 13079 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
6561, 63, 62, 64divsubdird 12079 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))) / 𝑥) = (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − ((𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) / 𝑥)))
6659, 60, 63addsubassd 11637 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))) = (((𝑅𝑥) · (log‘𝑥)) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))))))
6735recnd 11286 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
6862, 51mulcld 11278 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) ∈ ℂ)
6947, 67, 68subdid 11716 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))))
7049recnd 11286 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (log‘𝑛)) ∈ ℂ)
7122, 62, 70fsummulc2 15816 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛))))
7271oveq2d 7446 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))))
7334recnd 11286 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
7462adantr 480 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
7574, 70mulcld 11278 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛))) ∈ ℂ)
7622, 73, 75fsumsub 15820 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))))
7772, 76eqtr4d 2777 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))))
7826recnd 11286 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
7930recnd 11286 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
8033recnd 11286 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
8178, 79, 80mul32d 11468 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = (((Λ‘𝑛) · (log‘𝑛)) · (ψ‘(𝑥 / 𝑛))))
8224nncnd 12279 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
8324nnne0d 12313 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
8478, 80, 82, 83div23d 12077 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (log‘𝑛)) / 𝑛) = (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))
8584oveq2d 7446 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (((Λ‘𝑛) · (log‘𝑛)) / 𝑛)) = (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛))))
8678, 80mulcld 11278 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
8774, 86, 82, 83div12d 12076 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (((Λ‘𝑛) · (log‘𝑛)) / 𝑛)) = (((Λ‘𝑛) · (log‘𝑛)) · (𝑥 / 𝑛)))
8885, 87eqtr3d 2776 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛))) = (((Λ‘𝑛) · (log‘𝑛)) · (𝑥 / 𝑛)))
8981, 88oveq12d 7448 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = ((((Λ‘𝑛) · (log‘𝑛)) · (ψ‘(𝑥 / 𝑛))) − (((Λ‘𝑛) · (log‘𝑛)) · (𝑥 / 𝑛))))
9010adantr 480 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
9190, 32rpdivcld 13091 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
9254pntrval 27620 . . . . . . . . . . . . . . . . . 18 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))
9391, 92syl 17 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) = ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛)))
9493oveq2d 7446 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (log‘𝑛)) · (𝑅‘(𝑥 / 𝑛))) = (((Λ‘𝑛) · (log‘𝑛)) · ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))))
9528recnd 11286 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
9686, 79, 95subdid 11716 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (log‘𝑛)) · ((ψ‘(𝑥 / 𝑛)) − (𝑥 / 𝑛))) = ((((Λ‘𝑛) · (log‘𝑛)) · (ψ‘(𝑥 / 𝑛))) − (((Λ‘𝑛) · (log‘𝑛)) · (𝑥 / 𝑛))))
9794, 96eqtrd 2774 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (log‘𝑛)) · (𝑅‘(𝑥 / 𝑛))) = ((((Λ‘𝑛) · (log‘𝑛)) · (ψ‘(𝑥 / 𝑛))) − (((Λ‘𝑛) · (log‘𝑛)) · (𝑥 / 𝑛))))
9889, 97eqtr4d 2777 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = (((Λ‘𝑛) · (log‘𝑛)) · (𝑅‘(𝑥 / 𝑛))))
9955ffvelcdmi 7102 . . . . . . . . . . . . . . . . 17 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
10091, 99syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
101100recnd 11286 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
10278, 101, 80mul32d 11468 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = (((Λ‘𝑛) · (log‘𝑛)) · (𝑅‘(𝑥 / 𝑛))))
10398, 102eqtr4d 2777 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
104103sumeq2dv 15734 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · (((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
10577, 104eqtrd 2774 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
106105oveq2d 7446 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) − (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
10747, 62, 51mul12d 11467 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))))
108107oveq2d 7446 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − ((2 / (log‘𝑥)) · (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))))
10969, 106, 1083eqtr3rd 2783 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
110109oveq2d 7446 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) + (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))))) = (((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
11166, 110eqtrd 2774 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))) = (((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
112111oveq1d 7445 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))) / 𝑥) = ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
11354pntrval 27620 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
11410, 113syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
115114oveq1d 7445 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) = (((ψ‘𝑥) − 𝑥) · (log‘𝑥)))
11616recnd 11286 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (ψ‘𝑥) ∈ ℂ)
117116, 62, 12subdird 11717 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) − 𝑥) · (log‘𝑥)) = (((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))))
118115, 117eqtrd 2774 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) = (((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))))
119118oveq1d 7445 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))))
12017recnd 11286 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
12162, 12mulcld 11278 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
122120, 60, 121addsubd 11638 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))))
123119, 122eqtr4d 2777 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · (log‘𝑥))))
124123oveq1d 7445 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · (log‘𝑥))) / 𝑥))
12537recnd 11286 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ)
126125, 121, 62, 64divsubdird 12079 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)))
12712, 62, 64divcan3d 12045 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 · (log‘𝑥)) / 𝑥) = (log‘𝑥))
128127oveq2d 7446 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)))
129126, 128eqtrd 2774 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)))
130124, 129eqtrd 2774 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)))
13152, 62, 64divcan3d 12045 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) / 𝑥) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))
132130, 131oveq12d 7448 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − ((𝑥 · ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) / 𝑥)) = ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))))
13365, 112, 1323eqtr3rd 2783 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)))) = ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥))
13442, 53, 1333eqtrrd 2779 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) = ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥))))
135134mpteq2dva 5247 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) = (𝑥 ∈ (1(,)+∞) ↦ ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥)))))
13619, 11remulcld 11288 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
13738, 136resubcld 11688 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
13821, 50remulcld 11288 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) ∈ ℝ)
139138, 11resubcld 11688 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥)) ∈ ℝ)
140 selberg3 27617 . . . . 5 (𝑥 ∈ (1(,)+∞) ↦ (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
141140a1i 11 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
14219recnd 11286 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
14350, 20rerpdivcld 13105 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) ∈ ℝ)
144143recnd 11286 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) ∈ ℂ)
14511rehalfcld 12510 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℝ)
146145recnd 11286 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℂ)
147142, 144, 146subdid 11716 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) − ((log‘𝑥) / 2))) = ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥))) − (2 · ((log‘𝑥) / 2))))
148142, 12, 51, 46div32d 12063 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥))))
149148eqcomd 2740 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))))
150 2ne0 12367 . . . . . . . . . 10 2 ≠ 0
151150a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ≠ 0)
15212, 142, 151divcan2d 12042 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · ((log‘𝑥) / 2)) = (log‘𝑥))
153149, 152oveq12d 7448 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥))) − (2 · ((log‘𝑥) / 2))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥)))
154147, 153eqtrd 2774 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) − ((log‘𝑥) / 2))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥)))
155154mpteq2dva 5247 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) − ((log‘𝑥) / 2)))) = (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥))))
156143, 145resubcld 11688 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℝ)
157 ioossre 13444 . . . . . . . 8 (1(,)+∞) ⊆ ℝ
158 o1const 15652 . . . . . . . 8 (((1(,)+∞) ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
159157, 44, 158mp2an 692 . . . . . . 7 (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1)
160159a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
161 vmalogdivsum 27597 . . . . . . 7 (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)
162161a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
16319, 156, 160, 162o1mul2 15657 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (2 · ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛)) / (log‘𝑥)) − ((log‘𝑥) / 2)))) ∈ 𝑂(1))
164155, 163eqeltrrd 2839 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥))) ∈ 𝑂(1))
165137, 139, 141, 164o1sub2 15658 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘𝑛))) − (log‘𝑥)))) ∈ 𝑂(1))
166135, 165eqeltrd 2838 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1))
167166mptru 1543 1 (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wtru 1537  wcel 2105  wne 2937  wss 3962   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  +∞cpnf 11289   < clt 11292  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  +crp 13031  (,)cioo 13383  ...cfz 13543  cfl 13826  𝑂(1)co1 15518  Σcsu 15718  logclog 26610  Λcvma 27149  ψcchp 27150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-o1 15522  df-lo1 15523  df-sum 15719  df-ef 16099  df-e 16100  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-ulm 26434  df-log 26612  df-cxp 26613  df-atan 26924  df-em 27050  df-cht 27154  df-vma 27155  df-chp 27156  df-ppi 27157  df-mu 27158
This theorem is referenced by:  selberg34r  27629
  Copyright terms: Public domain W3C validator