Step | Hyp | Ref
| Expression |
1 | | elioore 13350 |
. . . . . . . . . . . . 13
β’ (π₯ β (1(,)+β) β
π₯ β
β) |
2 | 1 | adantl 482 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β π₯ β β) |
3 | | 1rp 12974 |
. . . . . . . . . . . . 13
β’ 1 β
β+ |
4 | 3 | a1i 11 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β 1 β β+) |
5 | | 1red 11211 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β 1 β β) |
6 | | eliooord 13379 |
. . . . . . . . . . . . . . 15
β’ (π₯ β (1(,)+β) β (1
< π₯ β§ π₯ <
+β)) |
7 | 6 | adantl 482 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β (1(,)+β)) β (1 < π₯ β§ π₯ < +β)) |
8 | 7 | simpld 495 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β 1 < π₯) |
9 | 5, 2, 8 | ltled 11358 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β 1 β€ π₯) |
10 | 2, 4, 9 | rpgecld 13051 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β π₯ β β+) |
11 | 10 | relogcld 26122 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β (logβπ₯) β β) |
12 | 11 | recnd 11238 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β (logβπ₯) β β) |
13 | 12 | 2timesd 12451 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β (2 Β· (logβπ₯)) = ((logβπ₯) + (logβπ₯))) |
14 | 13 | oveq2d 7421 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯))) = (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β ((logβπ₯) + (logβπ₯)))) |
15 | | chpcl 26617 |
. . . . . . . . . . . . 13
β’ (π₯ β β β
(Οβπ₯) β
β) |
16 | 2, 15 | syl 17 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β (Οβπ₯) β β) |
17 | 16, 11 | remulcld 11240 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β ((Οβπ₯) Β· (logβπ₯)) β β) |
18 | | 2re 12282 |
. . . . . . . . . . . . . 14
β’ 2 β
β |
19 | 18 | a1i 11 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β 2 β β) |
20 | 2, 8 | rplogcld 26128 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β (logβπ₯) β
β+) |
21 | 19, 20 | rerpdivcld 13043 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β (2 / (logβπ₯)) β β) |
22 | | fzfid 13934 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β (1...(ββπ₯)) β Fin) |
23 | | elfznn 13526 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(1...(ββπ₯))
β π β
β) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β π β β) |
25 | | vmacl 26611 |
. . . . . . . . . . . . . . . 16
β’ (π β β β
(Ξβπ) β
β) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (Ξβπ) β
β) |
27 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β π₯ β β) |
28 | 27, 24 | nndivred 12262 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π₯ / π) β β) |
29 | | chpcl 26617 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ / π) β β β (Οβ(π₯ / π)) β β) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (Οβ(π₯ / π)) β β) |
31 | 26, 30 | remulcld 11240 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
((Ξβπ)
Β· (Οβ(π₯ /
π))) β
β) |
32 | 24 | nnrpd 13010 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β π β β+) |
33 | 32 | relogcld 26122 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (logβπ) β
β) |
34 | 31, 33 | remulcld 11240 |
. . . . . . . . . . . . 13
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ)
Β· (Οβ(π₯ /
π))) Β·
(logβπ)) β
β) |
35 | 22, 34 | fsumrecl 15676 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β β) |
36 | 21, 35 | remulcld 11240 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))) β β) |
37 | 17, 36 | readdcld 11239 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β (((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β β) |
38 | 37, 10 | rerpdivcld 13043 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β ((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β β) |
39 | 38 | recnd 11238 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β ((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β β) |
40 | 39, 12, 12 | subsub4d 11598 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β ((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯)) β (logβπ₯)) = (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β ((logβπ₯) + (logβπ₯)))) |
41 | 14, 40 | eqtr4d 2775 |
. . . . . 6
β’
((β€ β§ π₯
β (1(,)+β)) β (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯))) = ((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯)) β (logβπ₯))) |
42 | 41 | oveq1d 7420 |
. . . . 5
β’
((β€ β§ π₯
β (1(,)+β)) β ((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯))) β (((2 /
(logβπ₯)) Β·
Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯))) = (((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯)) β (logβπ₯)) β (((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯)))) |
43 | 39, 12 | subcld 11567 |
. . . . . 6
β’
((β€ β§ π₯
β (1(,)+β)) β (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯)) β β) |
44 | | 2cn 12283 |
. . . . . . . . 9
β’ 2 β
β |
45 | 44 | a1i 11 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β 2 β β) |
46 | 20 | rpne0d 13017 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β (logβπ₯) β 0) |
47 | 45, 12, 46 | divcld 11986 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β (2 / (logβπ₯)) β β) |
48 | 26, 24 | nndivred 12262 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
((Ξβπ) / π) β
β) |
49 | 48, 33 | remulcld 11240 |
. . . . . . . . 9
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ) /
π) Β·
(logβπ)) β
β) |
50 | 22, 49 | fsumrecl 15676 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) β β) |
51 | 50 | recnd 11238 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) β β) |
52 | 47, 51 | mulcld 11230 |
. . . . . 6
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β β) |
53 | 43, 52, 12 | nnncan2d 11602 |
. . . . 5
β’
((β€ β§ π₯
β (1(,)+β)) β (((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯)) β (logβπ₯)) β (((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯))) = ((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯)) β ((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) |
54 | | pntrval.r |
. . . . . . . . . . . . 13
β’ π
= (π β β+ β¦
((Οβπ) β
π)) |
55 | 54 | pntrf 27055 |
. . . . . . . . . . . 12
β’ π
:β+βΆβ |
56 | 55 | ffvelcdmi 7082 |
. . . . . . . . . . 11
β’ (π₯ β β+
β (π
βπ₯) β
β) |
57 | 10, 56 | syl 17 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β (π
βπ₯) β β) |
58 | 57 | recnd 11238 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β (π
βπ₯) β β) |
59 | 58, 12 | mulcld 11230 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β ((π
βπ₯) Β· (logβπ₯)) β β) |
60 | 36 | recnd 11238 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))) β β) |
61 | 59, 60 | addcld 11229 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β (((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β β) |
62 | 2 | recnd 11238 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β π₯ β β) |
63 | 62, 52 | mulcld 11230 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) β β) |
64 | 10 | rpne0d 13017 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β π₯ β 0) |
65 | 61, 63, 62, 64 | divsubdird 12025 |
. . . . . 6
β’
((β€ β§ π₯
β (1(,)+β)) β (((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) / π₯) = (((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β ((π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) / π₯))) |
66 | 59, 60, 63 | addsubassd 11587 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) = (((π
βπ₯) Β· (logβπ₯)) + (((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))))) |
67 | 35 | recnd 11238 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β β) |
68 | 62, 51 | mulcld 11230 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β β) |
69 | 47, 67, 68 | subdid 11666 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 / (logβπ₯)) Β· (Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) = (((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))) β ((2 / (logβπ₯)) Β· (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))))) |
70 | 49 | recnd 11238 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ) /
π) Β·
(logβπ)) β
β) |
71 | 22, 62, 70 | fsummulc2 15726 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β (1(,)+β)) β (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) = Ξ£π β (1...(ββπ₯))(π₯ Β· (((Ξβπ) / π) Β· (logβπ)))) |
72 | 71 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β (Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) = (Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β Ξ£π β (1...(ββπ₯))(π₯ Β· (((Ξβπ) / π) Β· (logβπ))))) |
73 | 34 | recnd 11238 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ)
Β· (Οβ(π₯ /
π))) Β·
(logβπ)) β
β) |
74 | 62 | adantr 481 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β π₯ β β) |
75 | 74, 70 | mulcld 11230 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π₯ Β· (((Ξβπ) / π) Β· (logβπ))) β β) |
76 | 22, 73, 75 | fsumsub 15730 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β Ξ£π β (1...(ββπ₯))((((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β (π₯ Β· (((Ξβπ) / π) Β· (logβπ)))) = (Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β Ξ£π β (1...(ββπ₯))(π₯ Β· (((Ξβπ) / π) Β· (logβπ))))) |
77 | 72, 76 | eqtr4d 2775 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β (Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) = Ξ£π β (1...(ββπ₯))((((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β (π₯ Β· (((Ξβπ) / π) Β· (logβπ))))) |
78 | 26 | recnd 11238 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (Ξβπ) β
β) |
79 | 30 | recnd 11238 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (Οβ(π₯ / π)) β β) |
80 | 33 | recnd 11238 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (logβπ) β
β) |
81 | 78, 79, 80 | mul32d 11420 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ)
Β· (Οβ(π₯ /
π))) Β·
(logβπ)) =
(((Ξβπ)
Β· (logβπ))
Β· (Οβ(π₯ /
π)))) |
82 | 24 | nncnd 12224 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β π β β) |
83 | 24 | nnne0d 12258 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β π β 0) |
84 | 78, 80, 82, 83 | div23d 12023 |
. . . . . . . . . . . . . . . . . 18
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ)
Β· (logβπ)) /
π) =
(((Ξβπ) /
π) Β·
(logβπ))) |
85 | 84 | oveq2d 7421 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π₯ Β· (((Ξβπ) Β· (logβπ)) / π)) = (π₯ Β· (((Ξβπ) / π) Β· (logβπ)))) |
86 | 78, 80 | mulcld 11230 |
. . . . . . . . . . . . . . . . . 18
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
((Ξβπ)
Β· (logβπ))
β β) |
87 | 74, 86, 82, 83 | div12d 12022 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π₯ Β· (((Ξβπ) Β· (logβπ)) / π)) = (((Ξβπ) Β· (logβπ)) Β· (π₯ / π))) |
88 | 85, 87 | eqtr3d 2774 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π₯ Β· (((Ξβπ) / π) Β· (logβπ))) = (((Ξβπ) Β· (logβπ)) Β· (π₯ / π))) |
89 | 81, 88 | oveq12d 7423 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
((((Ξβπ)
Β· (Οβ(π₯ /
π))) Β·
(logβπ)) β
(π₯ Β·
(((Ξβπ) /
π) Β·
(logβπ)))) =
((((Ξβπ)
Β· (logβπ))
Β· (Οβ(π₯ /
π))) β
(((Ξβπ)
Β· (logβπ))
Β· (π₯ / π)))) |
90 | 10 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β π₯ β β+) |
91 | 90, 32 | rpdivcld 13029 |
. . . . . . . . . . . . . . . . . 18
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π₯ / π) β
β+) |
92 | 54 | pntrval 27054 |
. . . . . . . . . . . . . . . . . 18
β’ ((π₯ / π) β β+ β (π
β(π₯ / π)) = ((Οβ(π₯ / π)) β (π₯ / π))) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π
β(π₯ / π)) = ((Οβ(π₯ / π)) β (π₯ / π))) |
94 | 93 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ)
Β· (logβπ))
Β· (π
β(π₯ / π))) = (((Ξβπ) Β· (logβπ)) Β· ((Οβ(π₯ / π)) β (π₯ / π)))) |
95 | 28 | recnd 11238 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π₯ / π) β β) |
96 | 86, 79, 95 | subdid 11666 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ)
Β· (logβπ))
Β· ((Οβ(π₯ /
π)) β (π₯ / π))) = ((((Ξβπ) Β· (logβπ)) Β· (Οβ(π₯ / π))) β (((Ξβπ) Β· (logβπ)) Β· (π₯ / π)))) |
97 | 94, 96 | eqtrd 2772 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ)
Β· (logβπ))
Β· (π
β(π₯ / π))) = ((((Ξβπ) Β· (logβπ)) Β· (Οβ(π₯ / π))) β (((Ξβπ) Β· (logβπ)) Β· (π₯ / π)))) |
98 | 89, 97 | eqtr4d 2775 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
((((Ξβπ)
Β· (Οβ(π₯ /
π))) Β·
(logβπ)) β
(π₯ Β·
(((Ξβπ) /
π) Β·
(logβπ)))) =
(((Ξβπ)
Β· (logβπ))
Β· (π
β(π₯ / π)))) |
99 | 55 | ffvelcdmi 7082 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ / π) β β+ β (π
β(π₯ / π)) β β) |
100 | 91, 99 | syl 17 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π
β(π₯ / π)) β β) |
101 | 100 | recnd 11238 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β (π
β(π₯ / π)) β β) |
102 | 78, 101, 80 | mul32d 11420 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
(((Ξβπ)
Β· (π
β(π₯ / π))) Β· (logβπ)) = (((Ξβπ) Β· (logβπ)) Β· (π
β(π₯ / π)))) |
103 | 98, 102 | eqtr4d 2775 |
. . . . . . . . . . . . 13
β’
(((β€ β§ π₯
β (1(,)+β)) β§ π β (1...(ββπ₯))) β
((((Ξβπ)
Β· (Οβ(π₯ /
π))) Β·
(logβπ)) β
(π₯ Β·
(((Ξβπ) /
π) Β·
(logβπ)))) =
(((Ξβπ)
Β· (π
β(π₯ / π))) Β· (logβπ))) |
104 | 103 | sumeq2dv 15645 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β Ξ£π β (1...(ββπ₯))((((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β (π₯ Β· (((Ξβπ) / π) Β· (logβπ)))) = Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ))) |
105 | 77, 104 | eqtrd 2772 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β (Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) = Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ))) |
106 | 105 | oveq2d 7421 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 / (logβπ₯)) Β· (Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)) β (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) = ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ)))) |
107 | 47, 62, 51 | mul12d 11419 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 / (logβπ₯)) Β· (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) = (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) |
108 | 107 | oveq2d 7421 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β (((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))) β ((2 / (logβπ₯)) Β· (π₯ Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) = (((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))))) |
109 | 69, 106, 108 | 3eqtr3rd 2781 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β (((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) = ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ)))) |
110 | 109 | oveq2d 7421 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β (((π
βπ₯) Β· (logβπ₯)) + (((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))))) = (((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ))))) |
111 | 66, 110 | eqtrd 2772 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) = (((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ))))) |
112 | 111 | oveq1d 7420 |
. . . . . 6
β’
((β€ β§ π₯
β (1(,)+β)) β (((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) / π₯) = ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ)))) / π₯)) |
113 | 54 | pntrval 27054 |
. . . . . . . . . . . . . 14
β’ (π₯ β β+
β (π
βπ₯) = ((Οβπ₯) β π₯)) |
114 | 10, 113 | syl 17 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β (π
βπ₯) = ((Οβπ₯) β π₯)) |
115 | 114 | oveq1d 7420 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β ((π
βπ₯) Β· (logβπ₯)) = (((Οβπ₯) β π₯) Β· (logβπ₯))) |
116 | 16 | recnd 11238 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β (1(,)+β)) β (Οβπ₯) β β) |
117 | 116, 62, 12 | subdird 11667 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β (1(,)+β)) β (((Οβπ₯) β π₯) Β· (logβπ₯)) = (((Οβπ₯) Β· (logβπ₯)) β (π₯ Β· (logβπ₯)))) |
118 | 115, 117 | eqtrd 2772 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β ((π
βπ₯) Β· (logβπ₯)) = (((Οβπ₯) Β· (logβπ₯)) β (π₯ Β· (logβπ₯)))) |
119 | 118 | oveq1d 7420 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β (((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) = ((((Οβπ₯) Β· (logβπ₯)) β (π₯ Β· (logβπ₯))) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))))) |
120 | 17 | recnd 11238 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β ((Οβπ₯) Β· (logβπ₯)) β β) |
121 | 62, 12 | mulcld 11230 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β (1(,)+β)) β (π₯ Β· (logβπ₯)) β β) |
122 | 120, 60, 121 | addsubd 11588 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β ((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· (logβπ₯))) = ((((Οβπ₯) Β· (logβπ₯)) β (π₯ Β· (logβπ₯))) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ))))) |
123 | 119, 122 | eqtr4d 2775 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β (((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) = ((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· (logβπ₯)))) |
124 | 123 | oveq1d 7420 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) = (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· (logβπ₯))) / π₯)) |
125 | 37 | recnd 11238 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β (((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β β) |
126 | 125, 121,
62, 64 | divsubdird 12025 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· (logβπ₯))) / π₯) = (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β ((π₯ Β· (logβπ₯)) / π₯))) |
127 | 12, 62, 64 | divcan3d 11991 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β (1(,)+β)) β ((π₯ Β· (logβπ₯)) / π₯) = (logβπ₯)) |
128 | 127 | oveq2d 7421 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β ((π₯ Β· (logβπ₯)) / π₯)) = (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯))) |
129 | 126, 128 | eqtrd 2772 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) β (π₯ Β· (logβπ₯))) / π₯) = (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯))) |
130 | 124, 129 | eqtrd 2772 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) = (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯))) |
131 | 52, 62, 64 | divcan3d 11991 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β ((π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) / π₯) = ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) |
132 | 130, 131 | oveq12d 7423 |
. . . . . 6
β’
((β€ β§ π₯
β (1(,)+β)) β (((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β ((π₯ Β· ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) / π₯)) = ((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯)) β ((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))))) |
133 | 65, 112, 132 | 3eqtr3rd 2781 |
. . . . 5
β’
((β€ β§ π₯
β (1(,)+β)) β ((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (logβπ₯)) β ((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) = ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ)))) / π₯)) |
134 | 42, 53, 133 | 3eqtrrd 2777 |
. . . 4
β’
((β€ β§ π₯
β (1(,)+β)) β ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ)))) / π₯) = ((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯))) β (((2 /
(logβπ₯)) Β·
Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯)))) |
135 | 134 | mpteq2dva 5247 |
. . 3
β’ (β€
β (π₯ β
(1(,)+β) β¦ ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ)))) / π₯)) = (π₯ β (1(,)+β) β¦
((((((Οβπ₯)
Β· (logβπ₯)) +
((2 / (logβπ₯))
Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯))) β (((2 /
(logβπ₯)) Β·
Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯))))) |
136 | 19, 11 | remulcld 11240 |
. . . . 5
β’
((β€ β§ π₯
β (1(,)+β)) β (2 Β· (logβπ₯)) β β) |
137 | 38, 136 | resubcld 11638 |
. . . 4
β’
((β€ β§ π₯
β (1(,)+β)) β (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯))) β
β) |
138 | 21, 50 | remulcld 11240 |
. . . . 5
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β β) |
139 | 138, 11 | resubcld 11638 |
. . . 4
β’
((β€ β§ π₯
β (1(,)+β)) β (((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯)) β β) |
140 | | selberg3 27051 |
. . . . 5
β’ (π₯ β (1(,)+β) β¦
(((((Οβπ₯)
Β· (logβπ₯)) +
((2 / (logβπ₯))
Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯)))) β
π(1) |
141 | 140 | a1i 11 |
. . . 4
β’ (β€
β (π₯ β
(1(,)+β) β¦ (((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯)))) β
π(1)) |
142 | 19 | recnd 11238 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β 2 β β) |
143 | 50, 20 | rerpdivcld 13043 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β (Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β β) |
144 | 143 | recnd 11238 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β (Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β β) |
145 | 11 | rehalfcld 12455 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β ((logβπ₯) / 2) β β) |
146 | 145 | recnd 11238 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β ((logβπ₯) / 2) β β) |
147 | 142, 144,
146 | subdid 11666 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β (2 Β· ((Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β ((logβπ₯) / 2))) = ((2 Β· (Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯))) β (2 Β· ((logβπ₯) / 2)))) |
148 | 142, 12, 51, 46 | div32d 12009 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) = (2 Β· (Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)))) |
149 | 148 | eqcomd 2738 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β (2 Β· (Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯))) = ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)))) |
150 | | 2ne0 12312 |
. . . . . . . . . 10
β’ 2 β
0 |
151 | 150 | a1i 11 |
. . . . . . . . 9
β’
((β€ β§ π₯
β (1(,)+β)) β 2 β 0) |
152 | 12, 142, 151 | divcan2d 11988 |
. . . . . . . 8
β’
((β€ β§ π₯
β (1(,)+β)) β (2 Β· ((logβπ₯) / 2)) = (logβπ₯)) |
153 | 149, 152 | oveq12d 7423 |
. . . . . . 7
β’
((β€ β§ π₯
β (1(,)+β)) β ((2 Β· (Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯))) β (2 Β· ((logβπ₯) / 2))) = (((2 /
(logβπ₯)) Β·
Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯))) |
154 | 147, 153 | eqtrd 2772 |
. . . . . 6
β’
((β€ β§ π₯
β (1(,)+β)) β (2 Β· ((Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β ((logβπ₯) / 2))) = (((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯))) |
155 | 154 | mpteq2dva 5247 |
. . . . 5
β’ (β€
β (π₯ β
(1(,)+β) β¦ (2 Β· ((Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β ((logβπ₯) / 2)))) = (π₯ β (1(,)+β) β¦ (((2 /
(logβπ₯)) Β·
Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯)))) |
156 | 143, 145 | resubcld 11638 |
. . . . . 6
β’
((β€ β§ π₯
β (1(,)+β)) β ((Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β ((logβπ₯) / 2)) β β) |
157 | | ioossre 13381 |
. . . . . . . 8
β’
(1(,)+β) β β |
158 | | o1const 15560 |
. . . . . . . 8
β’
(((1(,)+β) β β β§ 2 β β) β (π₯ β (1(,)+β) β¦
2) β π(1)) |
159 | 157, 44, 158 | mp2an 690 |
. . . . . . 7
β’ (π₯ β (1(,)+β) β¦
2) β π(1) |
160 | 159 | a1i 11 |
. . . . . 6
β’ (β€
β (π₯ β
(1(,)+β) β¦ 2) β π(1)) |
161 | | vmalogdivsum 27031 |
. . . . . . 7
β’ (π₯ β (1(,)+β) β¦
((Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β ((logβπ₯) / 2))) β π(1) |
162 | 161 | a1i 11 |
. . . . . 6
β’ (β€
β (π₯ β
(1(,)+β) β¦ ((Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β ((logβπ₯) / 2))) β
π(1)) |
163 | 19, 156, 160, 162 | o1mul2 15565 |
. . . . 5
β’ (β€
β (π₯ β
(1(,)+β) β¦ (2 Β· ((Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ)) / (logβπ₯)) β ((logβπ₯) / 2)))) β
π(1)) |
164 | 155, 163 | eqeltrrd 2834 |
. . . 4
β’ (β€
β (π₯ β
(1(,)+β) β¦ (((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯))) β π(1)) |
165 | 137, 139,
141, 164 | o1sub2 15566 |
. . 3
β’ (β€
β (π₯ β
(1(,)+β) β¦ ((((((Οβπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (Οβ(π₯ / π))) Β· (logβπ)))) / π₯) β (2 Β· (logβπ₯))) β (((2 /
(logβπ₯)) Β·
Ξ£π β
(1...(ββπ₯))(((Ξβπ) / π) Β· (logβπ))) β (logβπ₯)))) β π(1)) |
166 | 135, 165 | eqeltrd 2833 |
. 2
β’ (β€
β (π₯ β
(1(,)+β) β¦ ((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β (1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ)))) / π₯)) β π(1)) |
167 | 166 | mptru 1548 |
1
β’ (π₯ β (1(,)+β) β¦
((((π
βπ₯) Β· (logβπ₯)) + ((2 / (logβπ₯)) Β· Ξ£π β
(1...(ββπ₯))(((Ξβπ) Β· (π
β(π₯ / π))) Β· (logβπ)))) / π₯)) β π(1) |