MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selbergr Structured version   Visualization version   GIF version

Theorem selbergr 27495
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
selbergr (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) ∈ 𝑂(1)
Distinct variable groups:   𝑎,𝑑,𝑥   𝑅,𝑑,𝑥
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem selbergr
StepHypRef Expression
1 reex 11119 . . . . . . 7 ℝ ∈ V
2 rpssre 12919 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 5264 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 ovexd 7388 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) ∈ V)
6 ovexd 7388 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)) ∈ V)
7 eqidd 2730 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))))
8 eqidd 2730 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))))
94, 5, 6, 7, 8offval2 7637 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))))
109mptru 1547 . . 3 ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))))
11 pntrval.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 27490 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
1312ffvelcdmi 7021 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1413recnd 11162 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℂ)
15 relogcl 26500 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1615recnd 11162 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
1714, 16mulcld 11154 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((𝑅𝑥) · (log‘𝑥)) ∈ ℂ)
18 fzfid 13898 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
19 elfznn 13474 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
2019adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
21 vmacl 27044 . . . . . . . . . . . 12 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
2220, 21syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℝ)
2322recnd 11162 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℂ)
24 rpre 12920 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
25 nndivre 12187 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
2624, 19, 25syl2an 596 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
27 chpcl 27050 . . . . . . . . . . . 12 ((𝑥 / 𝑑) ∈ ℝ → (ψ‘(𝑥 / 𝑑)) ∈ ℝ)
2826, 27syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑑)) ∈ ℝ)
2928recnd 11162 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑑)) ∈ ℂ)
3023, 29mulcld 11154 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) ∈ ℂ)
3118, 30fsumcl 15658 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) ∈ ℂ)
3217, 31addcld 11153 . . . . . . 7 (𝑥 ∈ ℝ+ → (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ)
33 rpcn 12922 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
34 rpne0 12928 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3532, 33, 34divcld 11918 . . . . . 6 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) ∈ ℂ)
3622, 20nndivred 12200 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) / 𝑑) ∈ ℝ)
3736recnd 11162 . . . . . . 7 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) / 𝑑) ∈ ℂ)
3818, 37fsumcl 15658 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) ∈ ℂ)
3935, 38, 16nnncan2d 11528 . . . . 5 (𝑥 ∈ ℝ+ → ((((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))
40 chpcl 27050 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
4124, 40syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
4241recnd 11162 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
4342, 16mulcld 11154 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
4443, 31addcld 11153 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ)
4544, 33, 34divcld 11918 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) ∈ ℂ)
4645, 16, 16subsub4d 11524 . . . . . . 7 (𝑥 ∈ ℝ+ → ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥))))
4711pntrval 27489 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
4847oveq1d 7368 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((𝑅𝑥) · (log‘𝑥)) = (((ψ‘𝑥) − 𝑥) · (log‘𝑥)))
4942, 33, 16subdird 11595 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) − 𝑥) · (log‘𝑥)) = (((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))))
5048, 49eqtrd 2764 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((𝑅𝑥) · (log‘𝑥)) = (((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))))
5150oveq1d 7368 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))))
5233, 16mulcld 11154 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 · (log‘𝑥)) ∈ ℂ)
5343, 31, 52addsubd 11514 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))))
5451, 53eqtr4d 2767 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) = ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))))
5554oveq1d 7368 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥))
56 rpcnne0 12930 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
57 divsubdir 11836 . . . . . . . . . 10 (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ ∧ (𝑥 · (log‘𝑥)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)))
5844, 52, 56, 57syl3anc 1373 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)))
5916, 33, 34divcan3d 11923 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((𝑥 · (log‘𝑥)) / 𝑥) = (log‘𝑥))
6059oveq2d 7369 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)))
6155, 58, 603eqtrd 2768 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)))
6261oveq1d 7368 . . . . . . 7 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) = ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)))
63162timesd 12385 . . . . . . . 8 (𝑥 ∈ ℝ+ → (2 · (log‘𝑥)) = ((log‘𝑥) + (log‘𝑥)))
6463oveq2d 7369 . . . . . . 7 (𝑥 ∈ ℝ+ → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥))))
6546, 62, 643eqtr4d 2774 . . . . . 6 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))))
6665oveq1d 7368 . . . . 5 (𝑥 ∈ ℝ+ → ((((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))))
6733, 38mulcld 11154 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) ∈ ℂ)
68 divsubdir 11836 . . . . . . 7 (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ ∧ (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥)))
6932, 67, 56, 68syl3anc 1373 . . . . . 6 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥)))
7017, 31, 67addsubassd 11513 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (((𝑅𝑥) · (log‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))))
7133adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
7271, 37mulcld 11154 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Λ‘𝑑) / 𝑑)) ∈ ℂ)
7318, 30, 72fsumsub 15713 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))(((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑))))
7426recnd 11162 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℂ)
7523, 29, 74subdid 11594 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − ((Λ‘𝑑) · (𝑥 / 𝑑))))
7619nnrpd 12953 . . . . . . . . . . . . . . 15 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
77 rpdivcl 12938 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
7876, 77sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
7911pntrval 27489 . . . . . . . . . . . . . 14 ((𝑥 / 𝑑) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑑)) = ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑)))
8078, 79syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑑)) = ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑)))
8180oveq2d 7369 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))) = ((Λ‘𝑑) · ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑))))
8220nnrpd 12953 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
83 rpcnne0 12930 . . . . . . . . . . . . . . 15 (𝑑 ∈ ℝ+ → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
8482, 83syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
85 div12 11819 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (Λ‘𝑑) ∈ ℂ ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → (𝑥 · ((Λ‘𝑑) / 𝑑)) = ((Λ‘𝑑) · (𝑥 / 𝑑)))
8671, 23, 84, 85syl3anc 1373 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Λ‘𝑑) / 𝑑)) = ((Λ‘𝑑) · (𝑥 / 𝑑)))
8786oveq2d 7369 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − ((Λ‘𝑑) · (𝑥 / 𝑑))))
8875, 81, 873eqtr4d 2774 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))))
8988sumeq2dv 15627 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))))
9018, 33, 37fsummulc2 15709 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑)))
9190oveq2d 7369 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑))))
9273, 89, 913eqtr4rd 2775 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))))
9392oveq2d 7369 . . . . . . . 8 (𝑥 ∈ ℝ+ → (((𝑅𝑥) · (log‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))) = (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))))
9470, 93eqtrd 2764 . . . . . . 7 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))))
9594oveq1d 7368 . . . . . 6 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
9638, 33, 34divcan3d 11923 . . . . . . 7 (𝑥 ∈ ℝ+ → ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))
9796oveq2d 7369 . . . . . 6 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥)) = (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))
9869, 95, 973eqtr3rd 2773 . . . . 5 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) = ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
9939, 66, 983eqtr3d 2772 . . . 4 (𝑥 ∈ ℝ+ → ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
10099mpteq2ia 5190 . . 3 (𝑥 ∈ ℝ+ ↦ ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
10110, 100eqtri 2752 . 2 ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
102 selberg2 27478 . . 3 (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
103 vmadivsum 27409 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) ∈ 𝑂(1)
104 o1sub 15541 . . 3 (((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) ∈ 𝑂(1))
105102, 103, 104mp2an 692 . 2 ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) ∈ 𝑂(1)
106101, 105eqeltrri 2825 1 (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  +crp 12911  ...cfz 13428  cfl 13712  𝑂(1)co1 15411  Σcsu 15611  logclog 26479  Λcvma 27018  ψcchp 27019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-o1 15415  df-lo1 15416  df-sum 15612  df-ef 15992  df-e 15993  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-ulm 26302  df-log 26481  df-cxp 26482  df-atan 26793  df-em 26919  df-cht 27023  df-vma 27024  df-chp 27025  df-ppi 27026  df-mu 27027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator