Proof of Theorem selbergr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | reex 11246 | . . . . . . 7
⊢ ℝ
∈ V | 
| 2 |  | rpssre 13042 | . . . . . . 7
⊢
ℝ+ ⊆ ℝ | 
| 3 | 1, 2 | ssexi 5322 | . . . . . 6
⊢
ℝ+ ∈ V | 
| 4 | 3 | a1i 11 | . . . . 5
⊢ (⊤
→ ℝ+ ∈ V) | 
| 5 |  | ovexd 7466 | . . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) ∈ V) | 
| 6 |  | ovexd 7466 | . . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)) ∈ V) | 
| 7 |  | eqidd 2738 | . . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
(((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))))) | 
| 8 |  | eqidd 2738 | . . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) | 
| 9 | 4, 5, 6, 7, 8 | offval2 7717 | . . . 4
⊢ (⊤
→ ((𝑥 ∈
ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
((((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))))) | 
| 10 | 9 | mptru 1547 | . . 3
⊢ ((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
((((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) | 
| 11 |  | pntrval.r | . . . . . . . . . . . 12
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) | 
| 12 | 11 | pntrf 27607 | . . . . . . . . . . 11
⊢ 𝑅:ℝ+⟶ℝ | 
| 13 | 12 | ffvelcdmi 7103 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℝ) | 
| 14 | 13 | recnd 11289 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℂ) | 
| 15 |  | relogcl 26617 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) | 
| 16 | 15 | recnd 11289 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℂ) | 
| 17 | 14, 16 | mulcld 11281 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) · (log‘𝑥)) ∈
ℂ) | 
| 18 |  | fzfid 14014 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (1...(⌊‘𝑥)) ∈ Fin) | 
| 19 |  | elfznn 13593 | . . . . . . . . . . . . 13
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) | 
| 20 | 19 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) | 
| 21 |  | vmacl 27161 | . . . . . . . . . . . 12
⊢ (𝑑 ∈ ℕ →
(Λ‘𝑑) ∈
ℝ) | 
| 22 | 20, 21 | syl 17 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑑)
∈ ℝ) | 
| 23 | 22 | recnd 11289 | . . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑑)
∈ ℂ) | 
| 24 |  | rpre 13043 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) | 
| 25 |  | nndivre 12307 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ) | 
| 26 | 24, 19, 25 | syl2an 596 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ) | 
| 27 |  | chpcl 27167 | . . . . . . . . . . . 12
⊢ ((𝑥 / 𝑑) ∈ ℝ → (ψ‘(𝑥 / 𝑑)) ∈ ℝ) | 
| 28 | 26, 27 | syl 17 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑑)) ∈
ℝ) | 
| 29 | 28 | recnd 11289 | . . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑑)) ∈
ℂ) | 
| 30 | 23, 29 | mulcld 11281 | . . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· (ψ‘(𝑥 /
𝑑))) ∈
ℂ) | 
| 31 | 18, 30 | fsumcl 15769 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) ∈ ℂ) | 
| 32 | 17, 31 | addcld 11280 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ) | 
| 33 |  | rpcn 13045 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) | 
| 34 |  | rpne0 13051 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) | 
| 35 | 32, 33, 34 | divcld 12043 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) ∈ ℂ) | 
| 36 | 22, 20 | nndivred 12320 | . . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
/ 𝑑) ∈
ℝ) | 
| 37 | 36 | recnd 11289 | . . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
/ 𝑑) ∈
ℂ) | 
| 38 | 18, 37 | fsumcl 15769 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) ∈ ℂ) | 
| 39 | 35, 38, 16 | nnncan2d 11655 | . . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) | 
| 40 |  | chpcl 27167 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) | 
| 41 | 24, 40 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥)
∈ ℝ) | 
| 42 | 41 | recnd 11289 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥)
∈ ℂ) | 
| 43 | 42, 16 | mulcld 11281 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ ((ψ‘𝑥)
· (log‘𝑥))
∈ ℂ) | 
| 44 | 43, 31 | addcld 11280 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ) | 
| 45 | 44, 33, 34 | divcld 12043 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) ∈ ℂ) | 
| 46 | 45, 16, 16 | subsub4d 11651 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥)))) | 
| 47 | 11 | pntrval 27606 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) = ((ψ‘𝑥) − 𝑥)) | 
| 48 | 47 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) · (log‘𝑥)) = (((ψ‘𝑥) − 𝑥) · (log‘𝑥))) | 
| 49 | 42, 33, 16 | subdird 11720 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ (((ψ‘𝑥)
− 𝑥) ·
(log‘𝑥)) =
(((ψ‘𝑥) ·
(log‘𝑥)) −
(𝑥 ·
(log‘𝑥)))) | 
| 50 | 48, 49 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) · (log‘𝑥)) = (((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥)))) | 
| 51 | 50 | oveq1d 7446 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))))) | 
| 52 | 33, 16 | mulcld 11281 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ·
(log‘𝑥)) ∈
ℂ) | 
| 53 | 43, 31, 52 | addsubd 11641 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ ((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))))) | 
| 54 | 51, 53 | eqtr4d 2780 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) = ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥)))) | 
| 55 | 54 | oveq1d 7446 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥)) | 
| 56 |  | rpcnne0 13053 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) | 
| 57 |  | divsubdir 11961 | . . . . . . . . . 10
⊢
(((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ ∧ (𝑥 · (log‘𝑥)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥))) | 
| 58 | 44, 52, 56, 57 | syl3anc 1373 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥))) | 
| 59 | 16, 33, 34 | divcan3d 12048 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ ((𝑥 ·
(log‘𝑥)) / 𝑥) = (log‘𝑥)) | 
| 60 | 59 | oveq2d 7447 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥))) | 
| 61 | 55, 58, 60 | 3eqtrd 2781 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥))) | 
| 62 | 61 | oveq1d 7446 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) = ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥))) | 
| 63 | 16 | 2timesd 12509 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (2 · (log‘𝑥)) = ((log‘𝑥) + (log‘𝑥))) | 
| 64 | 63 | oveq2d 7447 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥)))) | 
| 65 | 46, 62, 64 | 3eqtr4d 2787 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) | 
| 66 | 65 | oveq1d 7446 | . . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) | 
| 67 | 33, 38 | mulcld 11281 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) ∈ ℂ) | 
| 68 |  | divsubdir 11961 | . . . . . . 7
⊢
(((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ ∧ (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥))) | 
| 69 | 32, 67, 56, 68 | syl3anc 1373 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥))) | 
| 70 | 17, 31, 67 | addsubassd 11640 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (((𝑅‘𝑥) · (log‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))))) | 
| 71 | 33 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) | 
| 72 | 71, 37 | mulcld 11281 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ·
((Λ‘𝑑) / 𝑑)) ∈
ℂ) | 
| 73 | 18, 30, 72 | fsumsub 15824 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))(((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑)))) | 
| 74 | 26 | recnd 11289 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℂ) | 
| 75 | 23, 29, 74 | subdid 11719 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· ((ψ‘(𝑥 /
𝑑)) − (𝑥 / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − ((Λ‘𝑑) · (𝑥 / 𝑑)))) | 
| 76 | 19 | nnrpd 13075 | . . . . . . . . . . . . . . 15
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℝ+) | 
| 77 |  | rpdivcl 13060 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → (𝑥 / 𝑑) ∈
ℝ+) | 
| 78 | 76, 77 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ+) | 
| 79 | 11 | pntrval 27606 | . . . . . . . . . . . . . 14
⊢ ((𝑥 / 𝑑) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑑)) = ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑))) | 
| 80 | 78, 79 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑑)) = ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑))) | 
| 81 | 80 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· (𝑅‘(𝑥 / 𝑑))) = ((Λ‘𝑑) · ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑)))) | 
| 82 | 20 | nnrpd 13075 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℝ+) | 
| 83 |  | rpcnne0 13053 | . . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ ℝ+
→ (𝑑 ∈ ℂ
∧ 𝑑 ≠
0)) | 
| 84 | 82, 83 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑑 ∈ ℂ
∧ 𝑑 ≠
0)) | 
| 85 |  | div12 11944 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧
(Λ‘𝑑) ∈
ℂ ∧ (𝑑 ∈
ℂ ∧ 𝑑 ≠ 0))
→ (𝑥 ·
((Λ‘𝑑) / 𝑑)) = ((Λ‘𝑑) · (𝑥 / 𝑑))) | 
| 86 | 71, 23, 84, 85 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ·
((Λ‘𝑑) / 𝑑)) = ((Λ‘𝑑) · (𝑥 / 𝑑))) | 
| 87 | 86 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑑)
· (ψ‘(𝑥 /
𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − ((Λ‘𝑑) · (𝑥 / 𝑑)))) | 
| 88 | 75, 81, 87 | 3eqtr4d 2787 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· (𝑅‘(𝑥 / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑)))) | 
| 89 | 88 | sumeq2dv 15738 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑)))) | 
| 90 | 18, 33, 37 | fsummulc2 15820 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑))) | 
| 91 | 90 | oveq2d 7447 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑)))) | 
| 92 | 73, 89, 91 | 3eqtr4rd 2788 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) | 
| 93 | 92 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (((𝑅‘𝑥) · (log‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))) = (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))))) | 
| 94 | 70, 93 | eqtrd 2777 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))))) | 
| 95 | 94 | oveq1d 7446 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) | 
| 96 | 38, 33, 34 | divcan3d 12048 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((𝑥 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) | 
| 97 | 96 | oveq2d 7447 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥)) = (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) | 
| 98 | 69, 95, 97 | 3eqtr3rd 2786 | . . . . 5
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) = ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) | 
| 99 | 39, 66, 98 | 3eqtr3d 2785 | . . . 4
⊢ (𝑥 ∈ ℝ+
→ ((((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) | 
| 100 | 99 | mpteq2ia 5245 | . . 3
⊢ (𝑥 ∈ ℝ+
↦ ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) | 
| 101 | 10, 100 | eqtri 2765 | . 2
⊢ ((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) | 
| 102 |  | selberg2 27595 | . . 3
⊢ (𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1) | 
| 103 |  | vmadivsum 27526 | . . 3
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) ∈ 𝑂(1) | 
| 104 |  | o1sub 15652 | . . 3
⊢ (((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) ∧
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) ∈ 𝑂(1)) | 
| 105 | 102, 103,
104 | mp2an 692 | . 2
⊢ ((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) ∈ 𝑂(1) | 
| 106 | 101, 105 | eqeltrri 2838 | 1
⊢ (𝑥 ∈ ℝ+
↦ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) ∈ 𝑂(1) |