Proof of Theorem selbergr
| Step | Hyp | Ref
| Expression |
| 1 | | reex 11225 |
. . . . . . 7
⊢ ℝ
∈ V |
| 2 | | rpssre 13021 |
. . . . . . 7
⊢
ℝ+ ⊆ ℝ |
| 3 | 1, 2 | ssexi 5297 |
. . . . . 6
⊢
ℝ+ ∈ V |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ (⊤
→ ℝ+ ∈ V) |
| 5 | | ovexd 7445 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) ∈ V) |
| 6 | | ovexd 7445 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)) ∈ V) |
| 7 | | eqidd 2737 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
(((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))))) |
| 8 | | eqidd 2737 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) |
| 9 | 4, 5, 6, 7, 8 | offval2 7696 |
. . . 4
⊢ (⊤
→ ((𝑥 ∈
ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
((((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))))) |
| 10 | 9 | mptru 1547 |
. . 3
⊢ ((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
((((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) |
| 11 | | pntrval.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
| 12 | 11 | pntrf 27531 |
. . . . . . . . . . 11
⊢ 𝑅:ℝ+⟶ℝ |
| 13 | 12 | ffvelcdmi 7078 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℝ) |
| 14 | 13 | recnd 11268 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℂ) |
| 15 | | relogcl 26541 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
| 16 | 15 | recnd 11268 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℂ) |
| 17 | 14, 16 | mulcld 11260 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) · (log‘𝑥)) ∈
ℂ) |
| 18 | | fzfid 13996 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (1...(⌊‘𝑥)) ∈ Fin) |
| 19 | | elfznn 13575 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) |
| 21 | | vmacl 27085 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ ℕ →
(Λ‘𝑑) ∈
ℝ) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑑)
∈ ℝ) |
| 23 | 22 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑑)
∈ ℂ) |
| 24 | | rpre 13022 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 25 | | nndivre 12286 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ) |
| 26 | 24, 19, 25 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ) |
| 27 | | chpcl 27091 |
. . . . . . . . . . . 12
⊢ ((𝑥 / 𝑑) ∈ ℝ → (ψ‘(𝑥 / 𝑑)) ∈ ℝ) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑑)) ∈
ℝ) |
| 29 | 28 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑑)) ∈
ℂ) |
| 30 | 23, 29 | mulcld 11260 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· (ψ‘(𝑥 /
𝑑))) ∈
ℂ) |
| 31 | 18, 30 | fsumcl 15754 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) ∈ ℂ) |
| 32 | 17, 31 | addcld 11259 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ) |
| 33 | | rpcn 13024 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
| 34 | | rpne0 13030 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
| 35 | 32, 33, 34 | divcld 12022 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) ∈ ℂ) |
| 36 | 22, 20 | nndivred 12299 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
/ 𝑑) ∈
ℝ) |
| 37 | 36 | recnd 11268 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
/ 𝑑) ∈
ℂ) |
| 38 | 18, 37 | fsumcl 15754 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) ∈ ℂ) |
| 39 | 35, 38, 16 | nnncan2d 11634 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) |
| 40 | | chpcl 27091 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) |
| 41 | 24, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥)
∈ ℝ) |
| 42 | 41 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥)
∈ ℂ) |
| 43 | 42, 16 | mulcld 11260 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ ((ψ‘𝑥)
· (log‘𝑥))
∈ ℂ) |
| 44 | 43, 31 | addcld 11259 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ) |
| 45 | 44, 33, 34 | divcld 12022 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) ∈ ℂ) |
| 46 | 45, 16, 16 | subsub4d 11630 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥)))) |
| 47 | 11 | pntrval 27530 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) = ((ψ‘𝑥) − 𝑥)) |
| 48 | 47 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) · (log‘𝑥)) = (((ψ‘𝑥) − 𝑥) · (log‘𝑥))) |
| 49 | 42, 33, 16 | subdird 11699 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ (((ψ‘𝑥)
− 𝑥) ·
(log‘𝑥)) =
(((ψ‘𝑥) ·
(log‘𝑥)) −
(𝑥 ·
(log‘𝑥)))) |
| 50 | 48, 49 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) · (log‘𝑥)) = (((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥)))) |
| 51 | 50 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))))) |
| 52 | 33, 16 | mulcld 11260 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ·
(log‘𝑥)) ∈
ℂ) |
| 53 | 43, 31, 52 | addsubd 11620 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ ((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))))) |
| 54 | 51, 53 | eqtr4d 2774 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) = ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥)))) |
| 55 | 54 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥)) |
| 56 | | rpcnne0 13032 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
| 57 | | divsubdir 11940 |
. . . . . . . . . 10
⊢
(((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ ∧ (𝑥 · (log‘𝑥)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥))) |
| 58 | 44, 52, 56, 57 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥))) |
| 59 | 16, 33, 34 | divcan3d 12027 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ ((𝑥 ·
(log‘𝑥)) / 𝑥) = (log‘𝑥)) |
| 60 | 59 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥))) |
| 61 | 55, 58, 60 | 3eqtrd 2775 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥))) |
| 62 | 61 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) = ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥))) |
| 63 | 16 | 2timesd 12489 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (2 · (log‘𝑥)) = ((log‘𝑥) + (log‘𝑥))) |
| 64 | 63 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥)))) |
| 65 | 46, 62, 64 | 3eqtr4d 2781 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) |
| 66 | 65 | oveq1d 7425 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) |
| 67 | 33, 38 | mulcld 11260 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) ∈ ℂ) |
| 68 | | divsubdir 11940 |
. . . . . . 7
⊢
(((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ ∧ (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥))) |
| 69 | 32, 67, 56, 68 | syl3anc 1373 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥))) |
| 70 | 17, 31, 67 | addsubassd 11619 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (((𝑅‘𝑥) · (log‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))))) |
| 71 | 33 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) |
| 72 | 71, 37 | mulcld 11260 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ·
((Λ‘𝑑) / 𝑑)) ∈
ℂ) |
| 73 | 18, 30, 72 | fsumsub 15809 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))(((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑)))) |
| 74 | 26 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℂ) |
| 75 | 23, 29, 74 | subdid 11698 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· ((ψ‘(𝑥 /
𝑑)) − (𝑥 / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − ((Λ‘𝑑) · (𝑥 / 𝑑)))) |
| 76 | 19 | nnrpd 13054 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℝ+) |
| 77 | | rpdivcl 13039 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → (𝑥 / 𝑑) ∈
ℝ+) |
| 78 | 76, 77 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ+) |
| 79 | 11 | pntrval 27530 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 / 𝑑) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑑)) = ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑))) |
| 80 | 78, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑅‘(𝑥 / 𝑑)) = ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑))) |
| 81 | 80 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· (𝑅‘(𝑥 / 𝑑))) = ((Λ‘𝑑) · ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑)))) |
| 82 | 20 | nnrpd 13054 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℝ+) |
| 83 | | rpcnne0 13032 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ ℝ+
→ (𝑑 ∈ ℂ
∧ 𝑑 ≠
0)) |
| 84 | 82, 83 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑑 ∈ ℂ
∧ 𝑑 ≠
0)) |
| 85 | | div12 11923 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧
(Λ‘𝑑) ∈
ℂ ∧ (𝑑 ∈
ℂ ∧ 𝑑 ≠ 0))
→ (𝑥 ·
((Λ‘𝑑) / 𝑑)) = ((Λ‘𝑑) · (𝑥 / 𝑑))) |
| 86 | 71, 23, 84, 85 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ·
((Λ‘𝑑) / 𝑑)) = ((Λ‘𝑑) · (𝑥 / 𝑑))) |
| 87 | 86 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑑)
· (ψ‘(𝑥 /
𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − ((Λ‘𝑑) · (𝑥 / 𝑑)))) |
| 88 | 75, 81, 87 | 3eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑑)
· (𝑅‘(𝑥 / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑)))) |
| 89 | 88 | sumeq2dv 15723 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑)))) |
| 90 | 18, 33, 37 | fsummulc2 15805 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑))) |
| 91 | 90 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑)))) |
| 92 | 73, 89, 91 | 3eqtr4rd 2782 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) |
| 93 | 92 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (((𝑅‘𝑥) · (log‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))) = (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))))) |
| 94 | 70, 93 | eqtrd 2771 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))))) |
| 95 | 94 | oveq1d 7425 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) |
| 96 | 38, 33, 34 | divcan3d 12027 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((𝑥 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) |
| 97 | 96 | oveq2d 7426 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥)) = (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) |
| 98 | 69, 95, 97 | 3eqtr3rd 2780 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ (((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) = ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) |
| 99 | 39, 66, 98 | 3eqtr3d 2779 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ ((((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) |
| 100 | 99 | mpteq2ia 5221 |
. . 3
⊢ (𝑥 ∈ ℝ+
↦ ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) |
| 101 | 10, 100 | eqtri 2759 |
. 2
⊢ ((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) |
| 102 | | selberg2 27519 |
. . 3
⊢ (𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1) |
| 103 | | vmadivsum 27450 |
. . 3
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) ∈ 𝑂(1) |
| 104 | | o1sub 15637 |
. . 3
⊢ (((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) ∧
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) ∈ 𝑂(1)) |
| 105 | 102, 103,
104 | mp2an 692 |
. 2
⊢ ((𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑑 ∈
(1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘f −
(𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) ∈ 𝑂(1) |
| 106 | 101, 105 | eqeltrri 2832 |
1
⊢ (𝑥 ∈ ℝ+
↦ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) ∈ 𝑂(1) |