Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pntrf | Structured version Visualization version GIF version |
Description: Functionality of the residual. Lemma for pnt 26842. (Contributed by Mario Carneiro, 8-Apr-2016.) |
Ref | Expression |
---|---|
pntrval.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
Ref | Expression |
---|---|
pntrf | ⊢ 𝑅:ℝ+⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntrval.r | . 2 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
2 | rpre 12817 | . . . 4 ⊢ (𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ) | |
3 | chpcl 26353 | . . . 4 ⊢ (𝑎 ∈ ℝ → (ψ‘𝑎) ∈ ℝ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑎 ∈ ℝ+ → (ψ‘𝑎) ∈ ℝ) |
5 | 4, 2 | resubcld 11482 | . 2 ⊢ (𝑎 ∈ ℝ+ → ((ψ‘𝑎) − 𝑎) ∈ ℝ) |
6 | 1, 5 | fmpti 7025 | 1 ⊢ 𝑅:ℝ+⟶ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ↦ cmpt 5169 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 ℝcr 10949 − cmin 11284 ℝ+crp 12809 ψcchp 26322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 ax-addf 11029 ax-mulf 11030 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-om 7759 df-1st 7877 df-2nd 7878 df-supp 8026 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-2o 8346 df-oadd 8349 df-er 8547 df-map 8666 df-pm 8667 df-ixp 8735 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fsupp 9205 df-fi 9246 df-sup 9277 df-inf 9278 df-oi 9345 df-dju 9736 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-q 12768 df-rp 12810 df-xneg 12927 df-xadd 12928 df-xmul 12929 df-ioo 13162 df-ioc 13163 df-ico 13164 df-icc 13165 df-fz 13319 df-fzo 13462 df-fl 13591 df-mod 13669 df-seq 13801 df-exp 13862 df-fac 14067 df-bc 14096 df-hash 14124 df-shft 14854 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-limsup 15256 df-clim 15273 df-rlim 15274 df-sum 15474 df-ef 15853 df-sin 15855 df-cos 15856 df-pi 15858 df-dvds 16040 df-gcd 16278 df-prm 16451 df-pc 16612 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-starv 17051 df-sca 17052 df-vsca 17053 df-ip 17054 df-tset 17055 df-ple 17056 df-ds 17058 df-unif 17059 df-hom 17060 df-cco 17061 df-rest 17207 df-topn 17208 df-0g 17226 df-gsum 17227 df-topgen 17228 df-pt 17229 df-prds 17232 df-xrs 17287 df-qtop 17292 df-imas 17293 df-xps 17295 df-mre 17369 df-mrc 17370 df-acs 17372 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-mulg 18774 df-cntz 18996 df-cmn 19460 df-psmet 20669 df-xmet 20670 df-met 20671 df-bl 20672 df-mopn 20673 df-fbas 20674 df-fg 20675 df-cnfld 20678 df-top 22123 df-topon 22140 df-topsp 22162 df-bases 22176 df-cld 22250 df-ntr 22251 df-cls 22252 df-nei 22329 df-lp 22367 df-perf 22368 df-cn 22458 df-cnp 22459 df-haus 22546 df-tx 22793 df-hmeo 22986 df-fil 23077 df-fm 23169 df-flim 23170 df-flf 23171 df-xms 23553 df-ms 23554 df-tms 23555 df-cncf 24121 df-limc 25110 df-dv 25111 df-log 25792 df-vma 26327 df-chp 26328 |
This theorem is referenced by: pntrsumo1 26793 pntrsumbnd 26794 pntrsumbnd2 26795 selbergr 26796 selberg3r 26797 selberg34r 26799 pntrlog2bndlem1 26805 pntrlog2bndlem2 26806 pntrlog2bndlem3 26807 pntrlog2bndlem4 26808 pntrlog2bndlem5 26809 pntrlog2bndlem6 26811 pntrlog2bnd 26812 pntpbnd1a 26813 pntpbnd1 26814 pntpbnd2 26815 pntibndlem2 26819 pntlemn 26828 pntlemj 26831 pntlemf 26833 pntlemo 26835 pntleml 26839 |
Copyright terms: Public domain | W3C validator |