Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasvalstr | Structured version Visualization version GIF version |
Description: An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
imasvalstr.u | ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) |
Ref | Expression |
---|---|
imasvalstr | ⊢ 𝑈 Struct 〈1, ;12〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasvalstr.u | . 2 ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) | |
2 | eqid 2736 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) | |
3 | 2 | ipsstr 17091 | . . 3 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) Struct 〈1, 8〉 |
4 | 9nn 12117 | . . . 4 ⊢ 9 ∈ ℕ | |
5 | tsetndx 17107 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
6 | 9lt10 12614 | . . . 4 ⊢ 9 < ;10 | |
7 | 10nn 12499 | . . . 4 ⊢ ;10 ∈ ℕ | |
8 | plendx 17121 | . . . 4 ⊢ (le‘ndx) = ;10 | |
9 | 1nn0 12295 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
10 | 0nn0 12294 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 2nn 12092 | . . . . 5 ⊢ 2 ∈ ℕ | |
12 | 2pos 12122 | . . . . 5 ⊢ 0 < 2 | |
13 | 9, 10, 11, 12 | declt 12511 | . . . 4 ⊢ ;10 < ;12 |
14 | 9, 11 | decnncl 12503 | . . . 4 ⊢ ;12 ∈ ℕ |
15 | dsndx 17140 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
16 | 4, 5, 6, 7, 8, 13, 14, 15 | strle3 16906 | . . 3 ⊢ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} Struct 〈9, ;12〉 |
17 | 8lt9 12218 | . . 3 ⊢ 8 < 9 | |
18 | 3, 16, 17 | strleun 16903 | . 2 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) Struct 〈1, ;12〉 |
19 | 1, 18 | eqbrtri 5102 | 1 ⊢ 𝑈 Struct 〈1, ;12〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3890 {ctp 4569 〈cop 4571 class class class wbr 5081 ‘cfv 6458 0cc0 10917 1c1 10918 2c2 12074 8c8 12080 9c9 12081 ;cdc 12483 Struct cstr 16892 ndxcnx 16939 Basecbs 16957 +gcplusg 17007 .rcmulr 17008 Scalarcsca 17010 ·𝑠 cvsca 17011 ·𝑖cip 17012 TopSetcts 17013 lecple 17014 distcds 17016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-struct 16893 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 |
This theorem is referenced by: prdsvalstr 17208 imasbas 17268 imasds 17269 imasplusg 17273 imasmulr 17274 imassca 17275 imasvsca 17276 imasip 17277 imastset 17278 imasle 17279 |
Copyright terms: Public domain | W3C validator |