MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslemlem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslemlem 29999
Description: Lemma for clwwisshclwwslem 30000. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
clwwisshclwwslemlem (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐿   𝑅,𝑖   𝑖,𝑊

Proof of Theorem clwwisshclwwslemlem
StepHypRef Expression
1 zcn 12598 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
213ad2ant2 1134 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ)
3 1cnd 11235 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ)
4 zcn 12598 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
543ad2ant3 1135 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
62, 3, 5add32d 11468 . . . . 5 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) + 𝐵) = ((𝐴 + 𝐵) + 1))
76fvoveq1d 7432 . . . 4 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
873ad2ant1 1133 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
98preq2d 4721 . 2 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))})
10 zaddcl 12637 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
11103adant1 1130 . . . . . . . . . 10 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
12 eluz2nn 12903 . . . . . . . . . . 11 (𝐿 ∈ (ℤ‘2) → 𝐿 ∈ ℕ)
13123ad2ant1 1133 . . . . . . . . . 10 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℕ)
1411, 13zmodcld 13914 . . . . . . . . 9 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0)
1514adantr 480 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0)
16 uz2m1nn 12944 . . . . . . . . . 10 (𝐿 ∈ (ℤ‘2) → (𝐿 − 1) ∈ ℕ)
17163ad2ant1 1133 . . . . . . . . 9 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)
1817adantr 480 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) ∈ ℕ)
19 simpr 484 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1))
20 elfzo0 13722 . . . . . . . 8 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) ↔ (((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0 ∧ (𝐿 − 1) ∈ ℕ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)))
2115, 18, 19, 20syl3anbrc 1344 . . . . . . 7 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)))
22 fveq2 6881 . . . . . . . . . 10 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊𝑖) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
23 fvoveq1 7433 . . . . . . . . . 10 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝑖 + 1)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1)))
2422, 23preq12d 4722 . . . . . . . . 9 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))})
2524eleq1d 2820 . . . . . . . 8 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2625rspcv 3602 . . . . . . 7 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2721, 26syl 17 . . . . . 6 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2810zred 12702 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
29283adant1 1130 . . . . . . . . . . 11 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
3029adantr 480 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐴 + 𝐵) ∈ ℝ)
3112nnrpd 13054 . . . . . . . . . . . 12 (𝐿 ∈ (ℤ‘2) → 𝐿 ∈ ℝ+)
32313ad2ant1 1133 . . . . . . . . . . 11 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℝ+)
3332adantr 480 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → 𝐿 ∈ ℝ+)
34 modltm1p1mod 13946 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1))
3530, 33, 19, 34syl3anc 1373 . . . . . . . . 9 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1))
3635fveq2d 6885 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1)))
3736preq2d 4721 . . . . . . 7 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))})
3837eleq1d 2820 . . . . . 6 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ({(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
3927, 38sylibrd 259 . . . . 5 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
4039impancom 451 . . . 4 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
41403adant3 1132 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
42 zmodfzo 13916 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐿 ∈ ℕ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿))
4311, 13, 42syl2anc 584 . . . . . . . 8 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿))
44 elfzonlteqm1 13762 . . . . . . . . . 10 ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1))
4544eqcomd 2742 . . . . . . . . 9 ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))
4645ex 412 . . . . . . . 8 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)))
4743, 46syl 17 . . . . . . 7 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)))
48 fveq2 6881 . . . . . . . . . . . 12 ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
4948adantl 481 . . . . . . . . . . 11 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
50 zre 12597 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
51 zre 12597 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
52 readdcl 11217 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
5350, 51, 52syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
54533adant1 1130 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
5554, 32jca 511 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+))
5655adantr 480 . . . . . . . . . . . . . 14 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+))
57 simpr 484 . . . . . . . . . . . . . . 15 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))
5857eqcomd 2742 . . . . . . . . . . . . . 14 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1))
59 modm1p1mod0 13945 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0))
6056, 58, 59sylc 65 . . . . . . . . . . . . 13 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0)
6160eqcomd 2742 . . . . . . . . . . . 12 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → 0 = (((𝐴 + 𝐵) + 1) mod 𝐿))
6261fveq2d 6885 . . . . . . . . . . 11 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘0) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
6349, 62preq12d 4722 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → {(𝑊‘(𝐿 − 1)), (𝑊‘0)} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))})
6463eleq1d 2820 . . . . . . . . 9 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
6564biimpd 229 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
6665ex 412 . . . . . . 7 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6747, 66syld 47 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6867com23 86 . . . . 5 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6968imp 406 . . . 4 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
70693adant2 1131 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
7141, 70pm2.61d 179 . 2 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)
729, 71eqeltrd 2835 1 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {cpr 4608   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cmin 11471  cn 12245  2c2 12300  0cn0 12506  cz 12593  cuz 12857  +crp 13013  ..^cfzo 13676   mod cmo 13891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892
This theorem is referenced by:  clwwisshclwwslem  30000
  Copyright terms: Public domain W3C validator