MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslemlem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslemlem 28068
Description: Lemma for clwwisshclwwslem 28069. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
clwwisshclwwslemlem (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐿   𝑅,𝑖   𝑖,𝑊

Proof of Theorem clwwisshclwwslemlem
StepHypRef Expression
1 zcn 12164 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
213ad2ant2 1136 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ)
3 1cnd 10811 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ)
4 zcn 12164 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
543ad2ant3 1137 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
62, 3, 5add32d 11042 . . . . 5 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) + 𝐵) = ((𝐴 + 𝐵) + 1))
76fvoveq1d 7224 . . . 4 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
873ad2ant1 1135 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
98preq2d 4646 . 2 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))})
10 zaddcl 12200 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
11103adant1 1132 . . . . . . . . . 10 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
12 eluz2nn 12463 . . . . . . . . . . 11 (𝐿 ∈ (ℤ‘2) → 𝐿 ∈ ℕ)
13123ad2ant1 1135 . . . . . . . . . 10 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℕ)
1411, 13zmodcld 13448 . . . . . . . . 9 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0)
1514adantr 484 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0)
16 uz2m1nn 12502 . . . . . . . . . 10 (𝐿 ∈ (ℤ‘2) → (𝐿 − 1) ∈ ℕ)
17163ad2ant1 1135 . . . . . . . . 9 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)
1817adantr 484 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) ∈ ℕ)
19 simpr 488 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1))
20 elfzo0 13266 . . . . . . . 8 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) ↔ (((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0 ∧ (𝐿 − 1) ∈ ℕ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)))
2115, 18, 19, 20syl3anbrc 1345 . . . . . . 7 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)))
22 fveq2 6706 . . . . . . . . . 10 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊𝑖) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
23 fvoveq1 7225 . . . . . . . . . 10 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝑖 + 1)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1)))
2422, 23preq12d 4647 . . . . . . . . 9 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))})
2524eleq1d 2818 . . . . . . . 8 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2625rspcv 3525 . . . . . . 7 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2721, 26syl 17 . . . . . 6 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2810zred 12265 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
29283adant1 1132 . . . . . . . . . . 11 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
3029adantr 484 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐴 + 𝐵) ∈ ℝ)
3112nnrpd 12609 . . . . . . . . . . . 12 (𝐿 ∈ (ℤ‘2) → 𝐿 ∈ ℝ+)
32313ad2ant1 1135 . . . . . . . . . . 11 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℝ+)
3332adantr 484 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → 𝐿 ∈ ℝ+)
34 modltm1p1mod 13479 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1))
3530, 33, 19, 34syl3anc 1373 . . . . . . . . 9 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1))
3635fveq2d 6710 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1)))
3736preq2d 4646 . . . . . . 7 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))})
3837eleq1d 2818 . . . . . 6 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ({(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
3927, 38sylibrd 262 . . . . 5 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
4039impancom 455 . . . 4 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
41403adant3 1134 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
42 zmodfzo 13450 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐿 ∈ ℕ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿))
4311, 13, 42syl2anc 587 . . . . . . . 8 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿))
44 elfzonlteqm1 13301 . . . . . . . . . 10 ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1))
4544eqcomd 2740 . . . . . . . . 9 ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))
4645ex 416 . . . . . . . 8 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)))
4743, 46syl 17 . . . . . . 7 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)))
48 fveq2 6706 . . . . . . . . . . . 12 ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
4948adantl 485 . . . . . . . . . . 11 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
50 zre 12163 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
51 zre 12163 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
52 readdcl 10795 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
5350, 51, 52syl2an 599 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
54533adant1 1132 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
5554, 32jca 515 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+))
5655adantr 484 . . . . . . . . . . . . . 14 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+))
57 simpr 488 . . . . . . . . . . . . . . 15 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))
5857eqcomd 2740 . . . . . . . . . . . . . 14 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1))
59 modm1p1mod0 13478 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0))
6056, 58, 59sylc 65 . . . . . . . . . . . . 13 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0)
6160eqcomd 2740 . . . . . . . . . . . 12 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → 0 = (((𝐴 + 𝐵) + 1) mod 𝐿))
6261fveq2d 6710 . . . . . . . . . . 11 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘0) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
6349, 62preq12d 4647 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → {(𝑊‘(𝐿 − 1)), (𝑊‘0)} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))})
6463eleq1d 2818 . . . . . . . . 9 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
6564biimpd 232 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
6665ex 416 . . . . . . 7 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6747, 66syld 47 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6867com23 86 . . . . 5 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6968imp 410 . . . 4 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
70693adant2 1133 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
7141, 70pm2.61d 182 . 2 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)
729, 71eqeltrd 2834 1 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  {cpr 4533   class class class wbr 5043  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cmin 11045  cn 11813  2c2 11868  0cn0 12073  cz 12159  cuz 12421  +crp 12569  ..^cfzo 13221   mod cmo 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426
This theorem is referenced by:  clwwisshclwwslem  28069
  Copyright terms: Public domain W3C validator