MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslemlem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslemlem 27163
Description: Lemma for clwwisshclwwslem 27164. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
clwwisshclwwslemlem (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐿   𝑅,𝑖   𝑖,𝑊

Proof of Theorem clwwisshclwwslemlem
StepHypRef Expression
1 zcn 11584 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
213ad2ant2 1128 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ)
3 1cnd 10258 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ)
4 zcn 11584 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
543ad2ant3 1129 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
62, 3, 5add32d 10465 . . . . 5 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) + 𝐵) = ((𝐴 + 𝐵) + 1))
76fvoveq1d 6815 . . . 4 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
873ad2ant1 1127 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
98preq2d 4411 . 2 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))})
10 zaddcl 11619 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
11103adant1 1124 . . . . . . . . . 10 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
12 eluz2nn 11928 . . . . . . . . . . 11 (𝐿 ∈ (ℤ‘2) → 𝐿 ∈ ℕ)
13123ad2ant1 1127 . . . . . . . . . 10 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℕ)
1411, 13zmodcld 12899 . . . . . . . . 9 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0)
1514adantr 466 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0)
16 uz2m1nn 11966 . . . . . . . . . 10 (𝐿 ∈ (ℤ‘2) → (𝐿 − 1) ∈ ℕ)
17163ad2ant1 1127 . . . . . . . . 9 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)
1817adantr 466 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) ∈ ℕ)
19 simpr 471 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1))
20 elfzo0 12717 . . . . . . . 8 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) ↔ (((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0 ∧ (𝐿 − 1) ∈ ℕ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)))
2115, 18, 19, 20syl3anbrc 1428 . . . . . . 7 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)))
22 fveq2 6332 . . . . . . . . . 10 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊𝑖) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
23 fvoveq1 6816 . . . . . . . . . 10 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝑖 + 1)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1)))
2422, 23preq12d 4412 . . . . . . . . 9 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))})
2524eleq1d 2835 . . . . . . . 8 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2625rspcv 3456 . . . . . . 7 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2721, 26syl 17 . . . . . 6 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2810zred 11684 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
29283adant1 1124 . . . . . . . . . . 11 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
3029adantr 466 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐴 + 𝐵) ∈ ℝ)
3112nnrpd 12073 . . . . . . . . . . . 12 (𝐿 ∈ (ℤ‘2) → 𝐿 ∈ ℝ+)
32313ad2ant1 1127 . . . . . . . . . . 11 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℝ+)
3332adantr 466 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → 𝐿 ∈ ℝ+)
34 modltm1p1mod 12930 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1))
3530, 33, 19, 34syl3anc 1476 . . . . . . . . 9 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1))
3635fveq2d 6336 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1)))
3736preq2d 4411 . . . . . . 7 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))})
3837eleq1d 2835 . . . . . 6 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ({(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
3927, 38sylibrd 249 . . . . 5 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
4039impancom 439 . . . 4 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
41403adant3 1126 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
42 zmodfzo 12901 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐿 ∈ ℕ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿))
4311, 13, 42syl2anc 573 . . . . . . . 8 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿))
44 elfzonlteqm1 12752 . . . . . . . . . 10 ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1))
4544eqcomd 2777 . . . . . . . . 9 ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))
4645ex 397 . . . . . . . 8 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)))
4743, 46syl 17 . . . . . . 7 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)))
48 fveq2 6332 . . . . . . . . . . . 12 ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
4948adantl 467 . . . . . . . . . . 11 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
50 zre 11583 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
51 zre 11583 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
52 readdcl 10221 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
5350, 51, 52syl2an 583 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
54533adant1 1124 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
5554, 32jca 501 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+))
5655adantr 466 . . . . . . . . . . . . . 14 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+))
57 simpr 471 . . . . . . . . . . . . . . 15 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))
5857eqcomd 2777 . . . . . . . . . . . . . 14 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1))
59 modm1p1mod0 12929 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0))
6056, 58, 59sylc 65 . . . . . . . . . . . . 13 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0)
6160eqcomd 2777 . . . . . . . . . . . 12 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → 0 = (((𝐴 + 𝐵) + 1) mod 𝐿))
6261fveq2d 6336 . . . . . . . . . . 11 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘0) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
6349, 62preq12d 4412 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → {(𝑊‘(𝐿 − 1)), (𝑊‘0)} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))})
6463eleq1d 2835 . . . . . . . . 9 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
6564biimpd 219 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
6665ex 397 . . . . . . 7 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6747, 66syld 47 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6867com23 86 . . . . 5 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6968imp 393 . . . 4 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
70693adant2 1125 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
7141, 70pm2.61d 171 . 2 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)
729, 71eqeltrd 2850 1 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {cpr 4318   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   < clt 10276  cmin 10468  cn 11222  2c2 11272  0cn0 11494  cz 11579  cuz 11888  +crp 12035  ..^cfzo 12673   mod cmo 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877
This theorem is referenced by:  clwwisshclwwslem  27164
  Copyright terms: Public domain W3C validator