MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwwslemlem Structured version   Visualization version   GIF version

Theorem clwwisshclwwslemlem 30042
Description: Lemma for clwwisshclwwslem 30043. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
clwwisshclwwslemlem (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐿   𝑅,𝑖   𝑖,𝑊

Proof of Theorem clwwisshclwwslemlem
StepHypRef Expression
1 zcn 12616 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
213ad2ant2 1133 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ)
3 1cnd 11254 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ)
4 zcn 12616 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
543ad2ant3 1134 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
62, 3, 5add32d 11487 . . . . 5 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) + 𝐵) = ((𝐴 + 𝐵) + 1))
76fvoveq1d 7453 . . . 4 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
873ad2ant1 1132 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
98preq2d 4745 . 2 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))})
10 zaddcl 12655 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
11103adant1 1129 . . . . . . . . . 10 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
12 eluz2nn 12922 . . . . . . . . . . 11 (𝐿 ∈ (ℤ‘2) → 𝐿 ∈ ℕ)
13123ad2ant1 1132 . . . . . . . . . 10 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℕ)
1411, 13zmodcld 13929 . . . . . . . . 9 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0)
1514adantr 480 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0)
16 uz2m1nn 12963 . . . . . . . . . 10 (𝐿 ∈ (ℤ‘2) → (𝐿 − 1) ∈ ℕ)
17163ad2ant1 1132 . . . . . . . . 9 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)
1817adantr 480 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) ∈ ℕ)
19 simpr 484 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1))
20 elfzo0 13737 . . . . . . . 8 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) ↔ (((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0 ∧ (𝐿 − 1) ∈ ℕ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)))
2115, 18, 19, 20syl3anbrc 1342 . . . . . . 7 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)))
22 fveq2 6907 . . . . . . . . . 10 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊𝑖) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
23 fvoveq1 7454 . . . . . . . . . 10 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝑖 + 1)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1)))
2422, 23preq12d 4746 . . . . . . . . 9 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))})
2524eleq1d 2824 . . . . . . . 8 (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2625rspcv 3618 . . . . . . 7 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2721, 26syl 17 . . . . . 6 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
2810zred 12720 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
29283adant1 1129 . . . . . . . . . . 11 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
3029adantr 480 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐴 + 𝐵) ∈ ℝ)
3112nnrpd 13073 . . . . . . . . . . . 12 (𝐿 ∈ (ℤ‘2) → 𝐿 ∈ ℝ+)
32313ad2ant1 1132 . . . . . . . . . . 11 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℝ+)
3332adantr 480 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → 𝐿 ∈ ℝ+)
34 modltm1p1mod 13961 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1))
3530, 33, 19, 34syl3anc 1370 . . . . . . . . 9 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1))
3635fveq2d 6911 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1)))
3736preq2d 4745 . . . . . . 7 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))})
3837eleq1d 2824 . . . . . 6 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ({(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅))
3927, 38sylibrd 259 . . . . 5 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
4039impancom 451 . . . 4 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
41403adant3 1131 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
42 zmodfzo 13931 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐿 ∈ ℕ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿))
4311, 13, 42syl2anc 584 . . . . . . . 8 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿))
44 elfzonlteqm1 13777 . . . . . . . . . 10 ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1))
4544eqcomd 2741 . . . . . . . . 9 ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))
4645ex 412 . . . . . . . 8 (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)))
4743, 46syl 17 . . . . . . 7 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)))
48 fveq2 6907 . . . . . . . . . . . 12 ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
4948adantl 481 . . . . . . . . . . 11 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿)))
50 zre 12615 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
51 zre 12615 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
52 readdcl 11236 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
5350, 51, 52syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
54533adant1 1129 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ)
5554, 32jca 511 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+))
5655adantr 480 . . . . . . . . . . . . . 14 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+))
57 simpr 484 . . . . . . . . . . . . . . 15 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))
5857eqcomd 2741 . . . . . . . . . . . . . 14 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1))
59 modm1p1mod0 13960 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0))
6056, 58, 59sylc 65 . . . . . . . . . . . . 13 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0)
6160eqcomd 2741 . . . . . . . . . . . 12 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → 0 = (((𝐴 + 𝐵) + 1) mod 𝐿))
6261fveq2d 6911 . . . . . . . . . . 11 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘0) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)))
6349, 62preq12d 4746 . . . . . . . . . 10 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → {(𝑊‘(𝐿 − 1)), (𝑊‘0)} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))})
6463eleq1d 2824 . . . . . . . . 9 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
6564biimpd 229 . . . . . . . 8 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
6665ex 412 . . . . . . 7 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6747, 66syld 47 . . . . . 6 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6867com23 86 . . . . 5 ((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)))
6968imp 406 . . . 4 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
70693adant2 1130 . . 3 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))
7141, 70pm2.61d 179 . 2 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)
729, 71eqeltrd 2839 1 (((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {cpr 4633   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cmin 11490  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  +crp 13032  ..^cfzo 13691   mod cmo 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907
This theorem is referenced by:  clwwisshclwwslem  30043
  Copyright terms: Public domain W3C validator