Proof of Theorem clwwisshclwwslemlem
Step | Hyp | Ref
| Expression |
1 | | zcn 12335 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
2 | 1 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ) |
3 | | 1cnd 10981 |
. . . . . 6
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈
ℂ) |
4 | | zcn 12335 |
. . . . . . 7
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
5 | 4 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ) |
6 | 2, 3, 5 | add32d 11213 |
. . . . 5
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) + 𝐵) = ((𝐴 + 𝐵) + 1)) |
7 | 6 | fvoveq1d 7294 |
. . . 4
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))) |
8 | 7 | 3ad2ant1 1132 |
. . 3
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))) |
9 | 8 | preq2d 4682 |
. 2
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))}) |
10 | | zaddcl 12371 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) |
11 | 10 | 3adant1 1129 |
. . . . . . . . . 10
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) |
12 | | eluz2nn 12635 |
. . . . . . . . . . 11
⊢ (𝐿 ∈
(ℤ≥‘2) → 𝐿 ∈ ℕ) |
13 | 12 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈ ℕ) |
14 | 11, 13 | zmodcld 13623 |
. . . . . . . . 9
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈
ℕ0) |
15 | 14 | adantr 481 |
. . . . . . . 8
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈
ℕ0) |
16 | | uz2m1nn 12674 |
. . . . . . . . . 10
⊢ (𝐿 ∈
(ℤ≥‘2) → (𝐿 − 1) ∈ ℕ) |
17 | 16 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿 − 1) ∈ ℕ) |
18 | 17 | adantr 481 |
. . . . . . . 8
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) ∈ ℕ) |
19 | | simpr 485 |
. . . . . . . 8
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) |
20 | | elfzo0 13439 |
. . . . . . . 8
⊢ (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) ↔ (((𝐴 + 𝐵) mod 𝐿) ∈ ℕ0 ∧ (𝐿 − 1) ∈ ℕ ∧
((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1))) |
21 | 15, 18, 19, 20 | syl3anbrc 1342 |
. . . . . . 7
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1))) |
22 | | fveq2 6771 |
. . . . . . . . . 10
⊢ (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘𝑖) = (𝑊‘((𝐴 + 𝐵) mod 𝐿))) |
23 | | fvoveq1 7295 |
. . . . . . . . . 10
⊢ (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝑖 + 1)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))) |
24 | 22, 23 | preq12d 4683 |
. . . . . . . . 9
⊢ (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))}) |
25 | 24 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑖 = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅)) |
26 | 25 | rspcv 3556 |
. . . . . . 7
⊢ (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^(𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅)) |
27 | 21, 26 | syl 17 |
. . . . . 6
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅)) |
28 | 10 | zred 12437 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
29 | 28 | 3adant1 1129 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
30 | 29 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐴 + 𝐵) ∈ ℝ) |
31 | 12 | nnrpd 12781 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈
(ℤ≥‘2) → 𝐿 ∈
ℝ+) |
32 | 31 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐿 ∈
ℝ+) |
33 | 32 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → 𝐿 ∈
ℝ+) |
34 | | modltm1p1mod 13654 |
. . . . . . . . . 10
⊢ (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+ ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1)) |
35 | 30, 33, 19, 34 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = (((𝐴 + 𝐵) mod 𝐿) + 1)) |
36 | 35 | fveq2d 6775 |
. . . . . . . 8
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿)) = (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))) |
37 | 36 | preq2d 4682 |
. . . . . . 7
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))}) |
38 | 37 | eleq1d 2825 |
. . . . . 6
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ({(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) mod 𝐿) + 1))} ∈ 𝑅)) |
39 | 27, 38 | sylibrd 258 |
. . . . 5
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)) |
40 | 39 | impancom 452 |
. . . 4
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)) |
41 | 40 | 3adant3 1131 |
. . 3
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)) |
42 | | zmodfzo 13625 |
. . . . . . . . 9
⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐿 ∈ ℕ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿)) |
43 | 11, 13, 42 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿)) |
44 | | elfzonlteqm1 13474 |
. . . . . . . . . 10
⊢ ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1)) |
45 | 44 | eqcomd 2746 |
. . . . . . . . 9
⊢ ((((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) ∧ ¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) |
46 | 45 | ex 413 |
. . . . . . . 8
⊢ (((𝐴 + 𝐵) mod 𝐿) ∈ (0..^𝐿) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))) |
47 | 43, 46 | syl 17 |
. . . . . . 7
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿))) |
48 | | fveq2 6771 |
. . . . . . . . . . . 12
⊢ ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿))) |
49 | 48 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘(𝐿 − 1)) = (𝑊‘((𝐴 + 𝐵) mod 𝐿))) |
50 | | zre 12334 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
51 | | zre 12334 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℝ) |
52 | | readdcl 10965 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
53 | 50, 51, 52 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
54 | 53 | 3adant1 1129 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℝ) |
55 | 54, 32 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈
ℝ+)) |
56 | 55 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈
ℝ+)) |
57 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) |
58 | 57 | eqcomd 2746 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1)) |
59 | | modm1p1mod0 13653 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐿 ∈ ℝ+) → (((𝐴 + 𝐵) mod 𝐿) = (𝐿 − 1) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0)) |
60 | 56, 58, 59 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (((𝐴 + 𝐵) + 1) mod 𝐿) = 0) |
61 | 60 | eqcomd 2746 |
. . . . . . . . . . . 12
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → 0 = (((𝐴 + 𝐵) + 1) mod 𝐿)) |
62 | 61 | fveq2d 6775 |
. . . . . . . . . . 11
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → (𝑊‘0) = (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))) |
63 | 49, 62 | preq12d 4683 |
. . . . . . . . . 10
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → {(𝑊‘(𝐿 − 1)), (𝑊‘0)} = {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))}) |
64 | 63 | eleq1d 2825 |
. . . . . . . . 9
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 ↔ {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)) |
65 | 64 | biimpd 228 |
. . . . . . . 8
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿)) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)) |
66 | 65 | ex 413 |
. . . . . . 7
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿 − 1) = ((𝐴 + 𝐵) mod 𝐿) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))) |
67 | 47, 66 | syld 47 |
. . . . . 6
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))) |
68 | 67 | com23 86 |
. . . . 5
⊢ ((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ({(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅 → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅))) |
69 | 68 | imp 407 |
. . . 4
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)) |
70 | 69 | 3adant2 1130 |
. . 3
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → (¬ ((𝐴 + 𝐵) mod 𝐿) < (𝐿 − 1) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅)) |
71 | 41, 70 | pm2.61d 179 |
. 2
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 𝐵) + 1) mod 𝐿))} ∈ 𝑅) |
72 | 9, 71 | eqeltrd 2841 |
1
⊢ (((𝐿 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅) |