MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2lem1 Structured version   Visualization version   GIF version

Theorem clwwlknonex2lem1 30093
Description: Lemma 1 for clwwlknonex2 30095: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.)
Assertion
Ref Expression
clwwlknonex2lem1 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))

Proof of Theorem clwwlknonex2lem1
StepHypRef Expression
1 eluzelcn 12869 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
2 2cnd 12323 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
31, 2subcld 11599 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℂ)
43adantr 480 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) ∈ ℂ)
5 eleq1 2823 . . . . . 6 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ))
65adantl 481 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ))
74, 6mpbird 257 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) ∈ ℂ)
8 2cnd 12323 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 2 ∈ ℂ)
9 1cnd 11235 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 1 ∈ ℂ)
107, 8, 9addsubd 11620 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) + 2) − 1) = (((♯‘𝑊) − 1) + 2))
1110oveq2d 7426 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = (0..^(((♯‘𝑊) − 1) + 2)))
12 oveq1 7417 . . . . 5 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
1312adantl 481 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
14 uznn0sub 12896 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 3) ∈ ℕ0)
15 1cnd 11235 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
161, 2, 15subsub4d 11630 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1)))
17 2p1e3 12387 . . . . . . . 8 (2 + 1) = 3
1817oveq2i 7421 . . . . . . 7 (𝑁 − (2 + 1)) = (𝑁 − 3)
1916, 18eqtrdi 2787 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) = (𝑁 − 3))
20 nn0uz 12899 . . . . . . . 8 0 = (ℤ‘0)
2120eqcomi 2745 . . . . . . 7 (ℤ‘0) = ℕ0
2221a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (ℤ‘0) = ℕ0)
2314, 19, 223eltr4d 2850 . . . . 5 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) ∈ (ℤ‘0))
2423adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝑁 − 2) − 1) ∈ (ℤ‘0))
2513, 24eqeltrd 2835 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
26 fzosplitpr 13797 . . 3 (((♯‘𝑊) − 1) ∈ (ℤ‘0) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}))
2725, 26syl 17 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}))
287, 9npcand 11603 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
2928preq2d 4721 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)} = {((♯‘𝑊) − 1), (♯‘𝑊)})
3029uneq2d 4148 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
3111, 27, 303eqtrd 2775 1 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cun 3929  {cpr 4608  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  2c2 12300  3c3 12301  0cn0 12506  cuz 12857  ..^cfzo 13676  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677
This theorem is referenced by:  clwwlknonex2  30095
  Copyright terms: Public domain W3C validator