![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonex2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for clwwlknonex2 30138: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.) |
Ref | Expression |
---|---|
clwwlknonex2lem1 | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12888 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℂ) | |
2 | 2cnd 12342 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ∈ ℂ) | |
3 | 1, 2 | subcld 11618 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℂ) |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) ∈ ℂ) |
5 | eleq1 2827 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) |
7 | 4, 6 | mpbird 257 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) ∈ ℂ) |
8 | 2cnd 12342 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 2 ∈ ℂ) | |
9 | 1cnd 11254 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 1 ∈ ℂ) | |
10 | 7, 8, 9 | addsubd 11639 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) + 2) − 1) = (((♯‘𝑊) − 1) + 2)) |
11 | 10 | oveq2d 7447 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = (0..^(((♯‘𝑊) − 1) + 2))) |
12 | oveq1 7438 | . . . . 5 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) | |
13 | 12 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) |
14 | uznn0sub 12915 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 3) ∈ ℕ0) | |
15 | 1cnd 11254 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 ∈ ℂ) | |
16 | 1, 2, 15 | subsub4d 11649 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1))) |
17 | 2p1e3 12406 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
18 | 17 | oveq2i 7442 | . . . . . . 7 ⊢ (𝑁 − (2 + 1)) = (𝑁 − 3) |
19 | 16, 18 | eqtrdi 2791 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − 3)) |
20 | nn0uz 12918 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
21 | 20 | eqcomi 2744 | . . . . . . 7 ⊢ (ℤ≥‘0) = ℕ0 |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (ℤ≥‘0) = ℕ0) |
23 | 14, 19, 22 | 3eltr4d 2854 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
24 | 23 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
25 | 13, 24 | eqeltrd 2839 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ (ℤ≥‘0)) |
26 | fzosplitpr 13812 | . . 3 ⊢ (((♯‘𝑊) − 1) ∈ (ℤ≥‘0) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) |
28 | 7, 9 | npcand 11622 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊)) |
29 | 28 | preq2d 4745 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)} = {((♯‘𝑊) − 1), (♯‘𝑊)}) |
30 | 29 | uneq2d 4178 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
31 | 11, 27, 30 | 3eqtrd 2779 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 {cpr 4633 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 − cmin 11490 2c2 12319 3c3 12320 ℕ0cn0 12524 ℤ≥cuz 12876 ..^cfzo 13691 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 |
This theorem is referenced by: clwwlknonex2 30138 |
Copyright terms: Public domain | W3C validator |