MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2lem1 Structured version   Visualization version   GIF version

Theorem clwwlknonex2lem1 30086
Description: Lemma 1 for clwwlknonex2 30088: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.)
Assertion
Ref Expression
clwwlknonex2lem1 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))

Proof of Theorem clwwlknonex2lem1
StepHypRef Expression
1 eluzelcn 12781 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
2 2cnd 12240 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
31, 2subcld 11509 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℂ)
43adantr 480 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) ∈ ℂ)
5 eleq1 2816 . . . . . 6 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ))
65adantl 481 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ))
74, 6mpbird 257 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) ∈ ℂ)
8 2cnd 12240 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 2 ∈ ℂ)
9 1cnd 11145 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 1 ∈ ℂ)
107, 8, 9addsubd 11530 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) + 2) − 1) = (((♯‘𝑊) − 1) + 2))
1110oveq2d 7385 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = (0..^(((♯‘𝑊) − 1) + 2)))
12 oveq1 7376 . . . . 5 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
1312adantl 481 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
14 uznn0sub 12808 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 3) ∈ ℕ0)
15 1cnd 11145 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
161, 2, 15subsub4d 11540 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1)))
17 2p1e3 12299 . . . . . . . 8 (2 + 1) = 3
1817oveq2i 7380 . . . . . . 7 (𝑁 − (2 + 1)) = (𝑁 − 3)
1916, 18eqtrdi 2780 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) = (𝑁 − 3))
20 nn0uz 12811 . . . . . . . 8 0 = (ℤ‘0)
2120eqcomi 2738 . . . . . . 7 (ℤ‘0) = ℕ0
2221a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (ℤ‘0) = ℕ0)
2314, 19, 223eltr4d 2843 . . . . 5 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) ∈ (ℤ‘0))
2423adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝑁 − 2) − 1) ∈ (ℤ‘0))
2513, 24eqeltrd 2828 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
26 fzosplitpr 13713 . . 3 (((♯‘𝑊) − 1) ∈ (ℤ‘0) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}))
2725, 26syl 17 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}))
287, 9npcand 11513 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
2928preq2d 4700 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)} = {((♯‘𝑊) − 1), (♯‘𝑊)})
3029uneq2d 4127 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
3111, 27, 303eqtrd 2768 1 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cun 3909  {cpr 4587  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381  2c2 12217  3c3 12218  0cn0 12418  cuz 12769  ..^cfzo 13591  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  clwwlknonex2  30088
  Copyright terms: Public domain W3C validator