Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknonex2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for clwwlknonex2 28473: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.) |
Ref | Expression |
---|---|
clwwlknonex2lem1 | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12594 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℂ) | |
2 | 2cnd 12051 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ∈ ℂ) | |
3 | 1, 2 | subcld 11332 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℂ) |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) ∈ ℂ) |
5 | eleq1 2826 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) |
7 | 4, 6 | mpbird 256 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) ∈ ℂ) |
8 | 2cnd 12051 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 2 ∈ ℂ) | |
9 | 1cnd 10970 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 1 ∈ ℂ) | |
10 | 7, 8, 9 | addsubd 11353 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) + 2) − 1) = (((♯‘𝑊) − 1) + 2)) |
11 | 10 | oveq2d 7291 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = (0..^(((♯‘𝑊) − 1) + 2))) |
12 | oveq1 7282 | . . . . 5 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) | |
13 | 12 | adantl 482 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) |
14 | uznn0sub 12617 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 3) ∈ ℕ0) | |
15 | 1cnd 10970 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 ∈ ℂ) | |
16 | 1, 2, 15 | subsub4d 11363 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1))) |
17 | 2p1e3 12115 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
18 | 17 | oveq2i 7286 | . . . . . . 7 ⊢ (𝑁 − (2 + 1)) = (𝑁 − 3) |
19 | 16, 18 | eqtrdi 2794 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − 3)) |
20 | nn0uz 12620 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
21 | 20 | eqcomi 2747 | . . . . . . 7 ⊢ (ℤ≥‘0) = ℕ0 |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (ℤ≥‘0) = ℕ0) |
23 | 14, 19, 22 | 3eltr4d 2854 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
24 | 23 | adantr 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
25 | 13, 24 | eqeltrd 2839 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ (ℤ≥‘0)) |
26 | fzosplitpr 13496 | . . 3 ⊢ (((♯‘𝑊) − 1) ∈ (ℤ≥‘0) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) |
28 | 7, 9 | npcand 11336 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊)) |
29 | 28 | preq2d 4676 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)} = {((♯‘𝑊) − 1), (♯‘𝑊)}) |
30 | 29 | uneq2d 4097 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
31 | 11, 27, 30 | 3eqtrd 2782 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 {cpr 4563 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 2c2 12028 3c3 12029 ℕ0cn0 12233 ℤ≥cuz 12582 ..^cfzo 13382 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 |
This theorem is referenced by: clwwlknonex2 28473 |
Copyright terms: Public domain | W3C validator |