![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonex2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for clwwlknonex2 29939: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.) |
Ref | Expression |
---|---|
clwwlknonex2lem1 | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12872 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℂ) | |
2 | 2cnd 12328 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ∈ ℂ) | |
3 | 1, 2 | subcld 11609 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℂ) |
4 | 3 | adantr 479 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) ∈ ℂ) |
5 | eleq1 2817 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) | |
6 | 5 | adantl 480 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) |
7 | 4, 6 | mpbird 256 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) ∈ ℂ) |
8 | 2cnd 12328 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 2 ∈ ℂ) | |
9 | 1cnd 11247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 1 ∈ ℂ) | |
10 | 7, 8, 9 | addsubd 11630 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) + 2) − 1) = (((♯‘𝑊) − 1) + 2)) |
11 | 10 | oveq2d 7442 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = (0..^(((♯‘𝑊) − 1) + 2))) |
12 | oveq1 7433 | . . . . 5 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) | |
13 | 12 | adantl 480 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) |
14 | uznn0sub 12899 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 3) ∈ ℕ0) | |
15 | 1cnd 11247 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 ∈ ℂ) | |
16 | 1, 2, 15 | subsub4d 11640 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1))) |
17 | 2p1e3 12392 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
18 | 17 | oveq2i 7437 | . . . . . . 7 ⊢ (𝑁 − (2 + 1)) = (𝑁 − 3) |
19 | 16, 18 | eqtrdi 2784 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − 3)) |
20 | nn0uz 12902 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
21 | 20 | eqcomi 2737 | . . . . . . 7 ⊢ (ℤ≥‘0) = ℕ0 |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (ℤ≥‘0) = ℕ0) |
23 | 14, 19, 22 | 3eltr4d 2844 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
24 | 23 | adantr 479 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
25 | 13, 24 | eqeltrd 2829 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ (ℤ≥‘0)) |
26 | fzosplitpr 13781 | . . 3 ⊢ (((♯‘𝑊) − 1) ∈ (ℤ≥‘0) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) |
28 | 7, 9 | npcand 11613 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊)) |
29 | 28 | preq2d 4749 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)} = {((♯‘𝑊) − 1), (♯‘𝑊)}) |
30 | 29 | uneq2d 4164 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
31 | 11, 27, 30 | 3eqtrd 2772 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cun 3947 {cpr 4634 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 0cc0 11146 1c1 11147 + caddc 11149 − cmin 11482 2c2 12305 3c3 12306 ℕ0cn0 12510 ℤ≥cuz 12860 ..^cfzo 13667 ♯chash 14329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 |
This theorem is referenced by: clwwlknonex2 29939 |
Copyright terms: Public domain | W3C validator |