![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonex2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for clwwlknonex2 29351: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.) |
Ref | Expression |
---|---|
clwwlknonex2lem1 | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12830 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℂ) | |
2 | 2cnd 12286 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ∈ ℂ) | |
3 | 1, 2 | subcld 11567 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℂ) |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) ∈ ℂ) |
5 | eleq1 2821 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) |
7 | 4, 6 | mpbird 256 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) ∈ ℂ) |
8 | 2cnd 12286 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 2 ∈ ℂ) | |
9 | 1cnd 11205 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 1 ∈ ℂ) | |
10 | 7, 8, 9 | addsubd 11588 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) + 2) − 1) = (((♯‘𝑊) − 1) + 2)) |
11 | 10 | oveq2d 7421 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = (0..^(((♯‘𝑊) − 1) + 2))) |
12 | oveq1 7412 | . . . . 5 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) | |
13 | 12 | adantl 482 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) |
14 | uznn0sub 12857 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 3) ∈ ℕ0) | |
15 | 1cnd 11205 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 ∈ ℂ) | |
16 | 1, 2, 15 | subsub4d 11598 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1))) |
17 | 2p1e3 12350 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
18 | 17 | oveq2i 7416 | . . . . . . 7 ⊢ (𝑁 − (2 + 1)) = (𝑁 − 3) |
19 | 16, 18 | eqtrdi 2788 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − 3)) |
20 | nn0uz 12860 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
21 | 20 | eqcomi 2741 | . . . . . . 7 ⊢ (ℤ≥‘0) = ℕ0 |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (ℤ≥‘0) = ℕ0) |
23 | 14, 19, 22 | 3eltr4d 2848 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
24 | 23 | adantr 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
25 | 13, 24 | eqeltrd 2833 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ (ℤ≥‘0)) |
26 | fzosplitpr 13737 | . . 3 ⊢ (((♯‘𝑊) − 1) ∈ (ℤ≥‘0) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) |
28 | 7, 9 | npcand 11571 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊)) |
29 | 28 | preq2d 4743 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)} = {((♯‘𝑊) − 1), (♯‘𝑊)}) |
30 | 29 | uneq2d 4162 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
31 | 11, 27, 30 | 3eqtrd 2776 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 {cpr 4629 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 0cc0 11106 1c1 11107 + caddc 11109 − cmin 11440 2c2 12263 3c3 12264 ℕ0cn0 12468 ℤ≥cuz 12818 ..^cfzo 13623 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 |
This theorem is referenced by: clwwlknonex2 29351 |
Copyright terms: Public domain | W3C validator |