Step | Hyp | Ref
| Expression |
1 | | wwlksnextbij0.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | wwlksnextbij0.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
3 | | wwlksnextbij0.d |
. . 3
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} |
4 | | wwlksnextbij0.r |
. . 3
⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} |
5 | | wwlksnextbij0.f |
. . 3
⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (lastS‘𝑡)) |
6 | 1, 2, 3, 4, 5 | wwlksnextfun 28164 |
. 2
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝐷⟶𝑅) |
7 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑡 = 𝑑 → (lastS‘𝑡) = (lastS‘𝑑)) |
8 | | fvex 6769 |
. . . . . . 7
⊢
(lastS‘𝑑)
∈ V |
9 | 7, 5, 8 | fvmpt 6857 |
. . . . . 6
⊢ (𝑑 ∈ 𝐷 → (𝐹‘𝑑) = (lastS‘𝑑)) |
10 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑡 = 𝑥 → (lastS‘𝑡) = (lastS‘𝑥)) |
11 | | fvex 6769 |
. . . . . . 7
⊢
(lastS‘𝑥)
∈ V |
12 | 10, 5, 11 | fvmpt 6857 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (𝐹‘𝑥) = (lastS‘𝑥)) |
13 | 9, 12 | eqeqan12d 2752 |
. . . . 5
⊢ ((𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝑑) = (𝐹‘𝑥) ↔ (lastS‘𝑑) = (lastS‘𝑥))) |
14 | 13 | adantl 481 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷)) → ((𝐹‘𝑑) = (𝐹‘𝑥) ↔ (lastS‘𝑑) = (lastS‘𝑥))) |
15 | | fveqeq2 6765 |
. . . . . . . 8
⊢ (𝑤 = 𝑑 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑑) = (𝑁 + 2))) |
16 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑤 = 𝑑 → (𝑤 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1))) |
17 | 16 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑤 = 𝑑 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑑 prefix (𝑁 + 1)) = 𝑊)) |
18 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑑 → (lastS‘𝑤) = (lastS‘𝑑)) |
19 | 18 | preq2d 4673 |
. . . . . . . . 9
⊢ (𝑤 = 𝑑 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑑)}) |
20 | 19 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑤 = 𝑑 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) |
21 | 15, 17, 20 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝑤 = 𝑑 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))) |
22 | 21, 3 | elrab2 3620 |
. . . . . 6
⊢ (𝑑 ∈ 𝐷 ↔ (𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))) |
23 | | fveqeq2 6765 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑥) = (𝑁 + 2))) |
24 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑤 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1))) |
25 | 24 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑥 prefix (𝑁 + 1)) = 𝑊)) |
26 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (lastS‘𝑤) = (lastS‘𝑥)) |
27 | 26 | preq2d 4673 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑥)}) |
28 | 27 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) |
29 | 23, 25, 28 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) |
30 | 29, 3 | elrab2 3620 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) |
31 | | eqtr3 2764 |
. . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧
(♯‘𝑥) = (𝑁 + 2)) →
(♯‘𝑑) =
(♯‘𝑥)) |
32 | 31 | expcom 413 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑥) =
(𝑁 + 2) →
((♯‘𝑑) = (𝑁 + 2) →
(♯‘𝑑) =
(♯‘𝑥))) |
33 | 32 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥))) |
34 | 33 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥))) |
35 | 34 | com12 32 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑑) =
(𝑁 + 2) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥))) |
36 | 35 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥))) |
37 | 36 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥))) |
38 | 37 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (♯‘𝑑) = (♯‘𝑥)) |
39 | 38 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) →
(♯‘𝑑) =
(♯‘𝑥)) |
40 | 39 | adantr 480 |
. . . . . . . 8
⊢
(((((𝑑 ∈ Word
𝑉 ∧
((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧
(lastS‘𝑑) =
(lastS‘𝑥)) →
(♯‘𝑑) =
(♯‘𝑥)) |
41 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝑑 ∈ Word
𝑉 ∧
((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧
(lastS‘𝑑) =
(lastS‘𝑥)) →
(lastS‘𝑑) =
(lastS‘𝑥)) |
42 | | eqtr3 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊) → (𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1))) |
43 | | 1e2m1 12030 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 1 = (2
− 1) |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑁 ∈ ℕ0
→ 1 = (2 − 1)) |
45 | 44 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) = (𝑁 + (2 −
1))) |
46 | | nn0cn 12173 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
47 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℂ) |
48 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
49 | 46, 47, 48 | addsubassd 11282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 2) − 1)
= (𝑁 + (2 −
1))) |
50 | 45, 49 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) = ((𝑁 + 2) −
1)) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝑑) =
(𝑁 + 2)) → (𝑁 + 1) = ((𝑁 + 2) − 1)) |
52 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((♯‘𝑑) =
(𝑁 + 2) →
((♯‘𝑑) −
1) = ((𝑁 + 2) −
1)) |
53 | 52 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((♯‘𝑑) =
(𝑁 + 2) → ((𝑁 + 1) = ((♯‘𝑑) − 1) ↔ (𝑁 + 1) = ((𝑁 + 2) − 1))) |
54 | 53 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝑑) =
(𝑁 + 2)) → ((𝑁 + 1) = ((♯‘𝑑) − 1) ↔ (𝑁 + 1) = ((𝑁 + 2) − 1))) |
55 | 51, 54 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝑑) =
(𝑁 + 2)) → (𝑁 + 1) = ((♯‘𝑑) − 1)) |
56 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 + 1) = ((♯‘𝑑) − 1) → (𝑑 prefix (𝑁 + 1)) = (𝑑 prefix ((♯‘𝑑) − 1))) |
57 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 + 1) = ((♯‘𝑑) − 1) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix ((♯‘𝑑) − 1))) |
58 | 56, 57 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 + 1) = ((♯‘𝑑) − 1) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ↔ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))) |
59 | 55, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝑑) =
(𝑁 + 2)) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ↔ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))) |
60 | 59 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝑑) =
(𝑁 + 2)) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))) |
61 | 60 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝑑) =
(𝑁 + 2) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))) |
62 | 61 | com13 88 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
63 | 42, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊) → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
64 | 63 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 prefix (𝑁 + 1)) = 𝑊 → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1)))))) |
65 | 64 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 prefix (𝑁 + 1)) = 𝑊 → ((♯‘𝑑) = (𝑁 + 2) → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1)))))) |
66 | 65 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
67 | 66 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
68 | 67 | 3ad2ant2 1132 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
69 | 68 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
70 | 69 | com12 32 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
71 | 70 | 3adant3 1130 |
. . . . . . . . . . 11
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
72 | 71 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) −
1))))) |
73 | 72 | imp31 417 |
. . . . . . . . 9
⊢ ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))) |
74 | 73 | adantr 480 |
. . . . . . . 8
⊢
(((((𝑑 ∈ Word
𝑉 ∧
((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧
(lastS‘𝑑) =
(lastS‘𝑥)) →
(𝑑 prefix
((♯‘𝑑) −
1)) = (𝑥 prefix
((♯‘𝑑) −
1))) |
75 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → 𝑑 ∈ Word 𝑉) |
76 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → 𝑥 ∈ Word 𝑉) |
77 | 75, 76 | anim12i 612 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉)) |
78 | 77 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉)) |
79 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
80 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℝ |
81 | 80 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℝ) |
82 | | nn0ge0 12188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
83 | | 2pos 12006 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 <
2 |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 0 < 2) |
85 | 79, 81, 82, 84 | addgegt0d 11478 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 0 < (𝑁 +
2)) |
86 | 85 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)
→ 0 < (𝑁 +
2)) |
87 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑑) =
(𝑁 + 2) → (0 <
(♯‘𝑑) ↔ 0
< (𝑁 +
2))) |
88 | 87 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)
→ (0 < (♯‘𝑑) ↔ 0 < (𝑁 + 2))) |
89 | 86, 88 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)
→ 0 < (♯‘𝑑)) |
90 | | hashgt0n0 14008 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ Word 𝑉 ∧ 0 < (♯‘𝑑)) → 𝑑 ≠ ∅) |
91 | 89, 90 | sylan2 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)) → 𝑑 ≠ ∅) |
92 | 91 | exp32 420 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ Word 𝑉 → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → 𝑑 ≠
∅))) |
93 | 92 | com12 32 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑑) =
(𝑁 + 2) → (𝑑 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → 𝑑 ≠
∅))) |
94 | 93 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑑)
= (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → (𝑑 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → 𝑑 ≠
∅))) |
95 | 94 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → 𝑑 ≠ ∅)) |
96 | 95 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0 → 𝑑 ≠ ∅)) |
97 | 96 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → 𝑑 ≠ ∅) |
98 | 85 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)
→ 0 < (𝑁 +
2)) |
99 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑥) =
(𝑁 + 2) → (0 <
(♯‘𝑥) ↔ 0
< (𝑁 +
2))) |
100 | 99 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)
→ (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 2))) |
101 | 98, 100 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)
→ 0 < (♯‘𝑥)) |
102 | | hashgt0n0 14008 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ Word 𝑉 ∧ 0 < (♯‘𝑥)) → 𝑥 ≠ ∅) |
103 | 101, 102 | sylan2 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)) → 𝑥 ≠ ∅) |
104 | 103 | exp32 420 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Word 𝑉 → ((♯‘𝑥) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → 𝑥 ≠
∅))) |
105 | 104 | com12 32 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑥) =
(𝑁 + 2) → (𝑥 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → 𝑥 ≠
∅))) |
106 | 105 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑥)
= (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → 𝑥 ≠
∅))) |
107 | 106 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → 𝑥 ≠ ∅)) |
108 | 107 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0 → 𝑥 ≠ ∅)) |
109 | 108 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → 𝑥 ≠ ∅) |
110 | 78, 97, 109 | jca32 515 |
. . . . . . . . . 10
⊢ ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → ((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅))) |
111 | 110 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑑 ∈ Word
𝑉 ∧
((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧
(lastS‘𝑑) =
(lastS‘𝑥)) →
((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅))) |
112 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) → 𝑑 ∈ Word 𝑉) |
113 | 112 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 𝑑 ∈ Word 𝑉) |
114 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) → 𝑥 ∈ Word 𝑉) |
115 | 114 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ Word 𝑉) |
116 | | hashneq0 14007 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ Word 𝑉 → (0 < (♯‘𝑑) ↔ 𝑑 ≠ ∅)) |
117 | 116 | biimprd 247 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ Word 𝑉 → (𝑑 ≠ ∅ → 0 <
(♯‘𝑑))) |
118 | 117 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) → (𝑑 ≠ ∅ → 0 <
(♯‘𝑑))) |
119 | 118 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑑 ≠ ∅ → ((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) → 0 < (♯‘𝑑))) |
120 | 119 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅) → ((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) → 0 < (♯‘𝑑))) |
121 | 120 | impcom 407 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 0 <
(♯‘𝑑)) |
122 | | pfxsuff1eqwrdeq 14340 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ∧ 0 < (♯‘𝑑)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥))))) |
123 | 113, 115,
121, 122 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥))))) |
124 | | ancom 460 |
. . . . . . . . . . . 12
⊢ (((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧
(lastS‘𝑑) =
(lastS‘𝑥)) ↔
((lastS‘𝑑) =
(lastS‘𝑥) ∧
(𝑑 prefix
((♯‘𝑑) −
1)) = (𝑥 prefix
((♯‘𝑑) −
1)))) |
125 | 124 | anbi2i 622 |
. . . . . . . . . . 11
⊢
(((♯‘𝑑)
= (♯‘𝑥) ∧
((𝑑 prefix
((♯‘𝑑) −
1)) = (𝑥 prefix
((♯‘𝑑) −
1)) ∧ (lastS‘𝑑) =
(lastS‘𝑥))) ↔
((♯‘𝑑) =
(♯‘𝑥) ∧
((lastS‘𝑑) =
(lastS‘𝑥) ∧
(𝑑 prefix
((♯‘𝑑) −
1)) = (𝑥 prefix
((♯‘𝑑) −
1))))) |
126 | | 3anass 1093 |
. . . . . . . . . . 11
⊢
(((♯‘𝑑)
= (♯‘𝑥) ∧
(lastS‘𝑑) =
(lastS‘𝑥) ∧
(𝑑 prefix
((♯‘𝑑) −
1)) = (𝑥 prefix
((♯‘𝑑) −
1))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))) |
127 | 125, 126 | bitr4i 277 |
. . . . . . . . . 10
⊢
(((♯‘𝑑)
= (♯‘𝑥) ∧
((𝑑 prefix
((♯‘𝑑) −
1)) = (𝑥 prefix
((♯‘𝑑) −
1)) ∧ (lastS‘𝑑) =
(lastS‘𝑥))) ↔
((♯‘𝑑) =
(♯‘𝑥) ∧
(lastS‘𝑑) =
(lastS‘𝑥) ∧
(𝑑 prefix
((♯‘𝑑) −
1)) = (𝑥 prefix
((♯‘𝑑) −
1)))) |
128 | 123, 127 | bitrdi 286 |
. . . . . . . . 9
⊢ (((𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))) |
129 | 111, 128 | syl 17 |
. . . . . . . 8
⊢
(((((𝑑 ∈ Word
𝑉 ∧
((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧
(lastS‘𝑑) =
(lastS‘𝑥)) →
(𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))) |
130 | 40, 41, 74, 129 | mpbir3and 1340 |
. . . . . . 7
⊢
(((((𝑑 ∈ Word
𝑉 ∧
((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧
(lastS‘𝑑) =
(lastS‘𝑥)) →
𝑑 = 𝑥) |
131 | 130 | exp31 419 |
. . . . . 6
⊢ (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0 →
((lastS‘𝑑) =
(lastS‘𝑥) →
𝑑 = 𝑥))) |
132 | 22, 30, 131 | syl2anb 597 |
. . . . 5
⊢ ((𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷) → (𝑁 ∈ ℕ0 →
((lastS‘𝑑) =
(lastS‘𝑥) →
𝑑 = 𝑥))) |
133 | 132 | impcom 407 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷)) → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥)) |
134 | 14, 133 | sylbid 239 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷)) → ((𝐹‘𝑑) = (𝐹‘𝑥) → 𝑑 = 𝑥)) |
135 | 134 | ralrimivva 3114 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ∀𝑑 ∈
𝐷 ∀𝑥 ∈ 𝐷 ((𝐹‘𝑑) = (𝐹‘𝑥) → 𝑑 = 𝑥)) |
136 | | dff13 7109 |
. 2
⊢ (𝐹:𝐷–1-1→𝑅 ↔ (𝐹:𝐷⟶𝑅 ∧ ∀𝑑 ∈ 𝐷 ∀𝑥 ∈ 𝐷 ((𝐹‘𝑑) = (𝐹‘𝑥) → 𝑑 = 𝑥))) |
137 | 6, 135, 136 | sylanbrc 582 |
1
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝐷–1-1→𝑅) |