MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextinj Structured version   Visualization version   GIF version

Theorem wwlksnextinj 29749
Description: Lemma for wwlksnextbij 29752. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtxβ€˜πΊ)
wwlksnextbij0.e 𝐸 = (Edgβ€˜πΊ)
wwlksnextbij0.d 𝐷 = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑑 ∈ 𝐷 ↦ (lastSβ€˜π‘‘))
Assertion
Ref Expression
wwlksnextinj (𝑁 ∈ β„•0 β†’ 𝐹:𝐷–1-1→𝑅)
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,π‘Š   𝑑,𝐷   𝑛,𝐸   𝑀,𝐸   𝑑,𝑁,𝑀   𝑑,𝑅   𝑛,𝑉   𝑀,𝑉   𝑛,π‘Š   𝑑,𝑛
Allowed substitution hints:   𝐷(𝑀,𝑛)   𝑅(𝑀,𝑛)   𝐸(𝑑)   𝐹(𝑀,𝑑,𝑛)   𝐺(𝑑,𝑛)   𝑁(𝑛)   𝑉(𝑑)   π‘Š(𝑑)

Proof of Theorem wwlksnextinj
Dummy variables 𝑑 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.v . . 3 𝑉 = (Vtxβ€˜πΊ)
2 wwlksnextbij0.e . . 3 𝐸 = (Edgβ€˜πΊ)
3 wwlksnextbij0.d . . 3 𝐷 = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
4 wwlksnextbij0.r . . 3 𝑅 = {𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸}
5 wwlksnextbij0.f . . 3 𝐹 = (𝑑 ∈ 𝐷 ↦ (lastSβ€˜π‘‘))
61, 2, 3, 4, 5wwlksnextfun 29748 . 2 (𝑁 ∈ β„•0 β†’ 𝐹:π·βŸΆπ‘…)
7 fveq2 6890 . . . . . . 7 (𝑑 = 𝑑 β†’ (lastSβ€˜π‘‘) = (lastSβ€˜π‘‘))
8 fvex 6903 . . . . . . 7 (lastSβ€˜π‘‘) ∈ V
97, 5, 8fvmpt 6998 . . . . . 6 (𝑑 ∈ 𝐷 β†’ (πΉβ€˜π‘‘) = (lastSβ€˜π‘‘))
10 fveq2 6890 . . . . . . 7 (𝑑 = π‘₯ β†’ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯))
11 fvex 6903 . . . . . . 7 (lastSβ€˜π‘₯) ∈ V
1210, 5, 11fvmpt 6998 . . . . . 6 (π‘₯ ∈ 𝐷 β†’ (πΉβ€˜π‘₯) = (lastSβ€˜π‘₯))
139, 12eqeqan12d 2739 . . . . 5 ((𝑑 ∈ 𝐷 ∧ π‘₯ ∈ 𝐷) β†’ ((πΉβ€˜π‘‘) = (πΉβ€˜π‘₯) ↔ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)))
1413adantl 480 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ 𝐷 ∧ π‘₯ ∈ 𝐷)) β†’ ((πΉβ€˜π‘‘) = (πΉβ€˜π‘₯) ↔ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)))
15 fveqeq2 6899 . . . . . . . 8 (𝑀 = 𝑑 β†’ ((β™―β€˜π‘€) = (𝑁 + 2) ↔ (β™―β€˜π‘‘) = (𝑁 + 2)))
16 oveq1 7420 . . . . . . . . 9 (𝑀 = 𝑑 β†’ (𝑀 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1)))
1716eqeq1d 2727 . . . . . . . 8 (𝑀 = 𝑑 β†’ ((𝑀 prefix (𝑁 + 1)) = π‘Š ↔ (𝑑 prefix (𝑁 + 1)) = π‘Š))
18 fveq2 6890 . . . . . . . . . 10 (𝑀 = 𝑑 β†’ (lastSβ€˜π‘€) = (lastSβ€˜π‘‘))
1918preq2d 4741 . . . . . . . . 9 (𝑀 = 𝑑 β†’ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} = {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)})
2019eleq1d 2810 . . . . . . . 8 (𝑀 = 𝑑 β†’ ({(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸 ↔ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))
2115, 17, 203anbi123d 1432 . . . . . . 7 (𝑀 = 𝑑 β†’ (((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) ↔ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)))
2221, 3elrab2 3679 . . . . . 6 (𝑑 ∈ 𝐷 ↔ (𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)))
23 fveqeq2 6899 . . . . . . . 8 (𝑀 = π‘₯ β†’ ((β™―β€˜π‘€) = (𝑁 + 2) ↔ (β™―β€˜π‘₯) = (𝑁 + 2)))
24 oveq1 7420 . . . . . . . . 9 (𝑀 = π‘₯ β†’ (𝑀 prefix (𝑁 + 1)) = (π‘₯ prefix (𝑁 + 1)))
2524eqeq1d 2727 . . . . . . . 8 (𝑀 = π‘₯ β†’ ((𝑀 prefix (𝑁 + 1)) = π‘Š ↔ (π‘₯ prefix (𝑁 + 1)) = π‘Š))
26 fveq2 6890 . . . . . . . . . 10 (𝑀 = π‘₯ β†’ (lastSβ€˜π‘€) = (lastSβ€˜π‘₯))
2726preq2d 4741 . . . . . . . . 9 (𝑀 = π‘₯ β†’ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} = {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)})
2827eleq1d 2810 . . . . . . . 8 (𝑀 = π‘₯ β†’ ({(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸 ↔ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))
2923, 25, 283anbi123d 1432 . . . . . . 7 (𝑀 = π‘₯ β†’ (((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) ↔ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)))
3029, 3elrab2 3679 . . . . . 6 (π‘₯ ∈ 𝐷 ↔ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)))
31 eqtr3 2751 . . . . . . . . . . . . . . . . 17 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (β™―β€˜π‘₯) = (𝑁 + 2)) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯))
3231expcom 412 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘₯) = (𝑁 + 2) β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯)))
33323ad2ant1 1130 . . . . . . . . . . . . . . 15 (((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸) β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯)))
3433adantl 480 . . . . . . . . . . . . . 14 ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯)))
3534com12 32 . . . . . . . . . . . . 13 ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯)))
36353ad2ant1 1130 . . . . . . . . . . . 12 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸) β†’ ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯)))
3736adantl 480 . . . . . . . . . . 11 ((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) β†’ ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯)))
3837imp 405 . . . . . . . . . 10 (((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯))
3938adantr 479 . . . . . . . . 9 ((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯))
4039adantr 479 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)) β†’ (β™―β€˜π‘‘) = (β™―β€˜π‘₯))
41 simpr 483 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)) β†’ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯))
42 eqtr3 2751 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š) β†’ (𝑑 prefix (𝑁 + 1)) = (π‘₯ prefix (𝑁 + 1)))
43 1e2m1 12364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 = (2 βˆ’ 1)
4443a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ β„•0 β†’ 1 = (2 βˆ’ 1))
4544oveq2d 7429 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ β„•0 β†’ (𝑁 + 1) = (𝑁 + (2 βˆ’ 1)))
46 nn0cn 12507 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„‚)
47 2cnd 12315 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ β„•0 β†’ 2 ∈ β„‚)
48 1cnd 11234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ β„•0 β†’ 1 ∈ β„‚)
4946, 47, 48addsubassd 11616 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ β„•0 β†’ ((𝑁 + 2) βˆ’ 1) = (𝑁 + (2 βˆ’ 1)))
5045, 49eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ β„•0 β†’ (𝑁 + 1) = ((𝑁 + 2) βˆ’ 1))
5150adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ β„•0 ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ (𝑁 + 1) = ((𝑁 + 2) βˆ’ 1))
52 oveq1 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ ((β™―β€˜π‘‘) βˆ’ 1) = ((𝑁 + 2) βˆ’ 1))
5352eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ ((𝑁 + 1) = ((β™―β€˜π‘‘) βˆ’ 1) ↔ (𝑁 + 1) = ((𝑁 + 2) βˆ’ 1)))
5453adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ β„•0 ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ ((𝑁 + 1) = ((β™―β€˜π‘‘) βˆ’ 1) ↔ (𝑁 + 1) = ((𝑁 + 2) βˆ’ 1)))
5551, 54mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ β„•0 ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ (𝑁 + 1) = ((β™―β€˜π‘‘) βˆ’ 1))
56 oveq2 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) = ((β™―β€˜π‘‘) βˆ’ 1) β†’ (𝑑 prefix (𝑁 + 1)) = (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)))
57 oveq2 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) = ((β™―β€˜π‘‘) βˆ’ 1) β†’ (π‘₯ prefix (𝑁 + 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))
5856, 57eqeq12d 2741 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) = ((β™―β€˜π‘‘) βˆ’ 1) β†’ ((𝑑 prefix (𝑁 + 1)) = (π‘₯ prefix (𝑁 + 1)) ↔ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1))))
5955, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ β„•0 ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ ((𝑑 prefix (𝑁 + 1)) = (π‘₯ prefix (𝑁 + 1)) ↔ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1))))
6059biimpd 228 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ β„•0 ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ ((𝑑 prefix (𝑁 + 1)) = (π‘₯ prefix (𝑁 + 1)) β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1))))
6160ex 411 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ ((𝑑 prefix (𝑁 + 1)) = (π‘₯ prefix (𝑁 + 1)) β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
6261com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 prefix (𝑁 + 1)) = (π‘₯ prefix (𝑁 + 1)) β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
6342, 62syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑑 prefix (𝑁 + 1)) = π‘Š ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š) β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
6463ex 411 . . . . . . . . . . . . . . . . . 18 ((𝑑 prefix (𝑁 + 1)) = π‘Š β†’ ((π‘₯ prefix (𝑁 + 1)) = π‘Š β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1))))))
6564com23 86 . . . . . . . . . . . . . . . . 17 ((𝑑 prefix (𝑁 + 1)) = π‘Š β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ ((π‘₯ prefix (𝑁 + 1)) = π‘Š β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1))))))
6665impcom 406 . . . . . . . . . . . . . . . 16 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š) β†’ ((π‘₯ prefix (𝑁 + 1)) = π‘Š β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
6766com12 32 . . . . . . . . . . . . . . 15 ((π‘₯ prefix (𝑁 + 1)) = π‘Š β†’ (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
68673ad2ant2 1131 . . . . . . . . . . . . . 14 (((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸) β†’ (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
6968adantl 480 . . . . . . . . . . . . 13 ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
7069com12 32 . . . . . . . . . . . 12 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š) β†’ ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
71703adant3 1129 . . . . . . . . . . 11 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸) β†’ ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
7271adantl 480 . . . . . . . . . 10 ((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) β†’ ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
7372imp31 416 . . . . . . . . 9 ((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))
7473adantr 479 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)) β†’ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))
75 simpl 481 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) β†’ 𝑑 ∈ Word 𝑉)
76 simpl 481 . . . . . . . . . . . . 13 ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ π‘₯ ∈ Word 𝑉)
7775, 76anim12i 611 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) β†’ (𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉))
7877adantr 479 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) β†’ (𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉))
79 nn0re 12506 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ ℝ)
80 2re 12311 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
8180a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ 2 ∈ ℝ)
82 nn0ge0 12522 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ 0 ≀ 𝑁)
83 2pos 12340 . . . . . . . . . . . . . . . . . . . . . 22 0 < 2
8483a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ 0 < 2)
8579, 81, 82, 84addgegt0d 11812 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 0 < (𝑁 + 2))
8685adantl 480 . . . . . . . . . . . . . . . . . . 19 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ 𝑁 ∈ β„•0) β†’ 0 < (𝑁 + 2))
87 breq2 5148 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (0 < (β™―β€˜π‘‘) ↔ 0 < (𝑁 + 2)))
8887adantr 479 . . . . . . . . . . . . . . . . . . 19 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ 𝑁 ∈ β„•0) β†’ (0 < (β™―β€˜π‘‘) ↔ 0 < (𝑁 + 2)))
8986, 88mpbird 256 . . . . . . . . . . . . . . . . . 18 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ 𝑁 ∈ β„•0) β†’ 0 < (β™―β€˜π‘‘))
90 hashgt0n0 14351 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ Word 𝑉 ∧ 0 < (β™―β€˜π‘‘)) β†’ 𝑑 β‰  βˆ…)
9189, 90sylan2 591 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ 𝑁 ∈ β„•0)) β†’ 𝑑 β‰  βˆ…)
9291exp32 419 . . . . . . . . . . . . . . . 16 (𝑑 ∈ Word 𝑉 β†’ ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (𝑁 ∈ β„•0 β†’ 𝑑 β‰  βˆ…)))
9392com12 32 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (𝑑 ∈ Word 𝑉 β†’ (𝑁 ∈ β„•0 β†’ 𝑑 β‰  βˆ…)))
94933ad2ant1 1130 . . . . . . . . . . . . . 14 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸) β†’ (𝑑 ∈ Word 𝑉 β†’ (𝑁 ∈ β„•0 β†’ 𝑑 β‰  βˆ…)))
9594impcom 406 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) β†’ (𝑁 ∈ β„•0 β†’ 𝑑 β‰  βˆ…))
9695adantr 479 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) β†’ (𝑁 ∈ β„•0 β†’ 𝑑 β‰  βˆ…))
9796imp 405 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) β†’ 𝑑 β‰  βˆ…)
9885adantl 480 . . . . . . . . . . . . . . . . . . 19 (((β™―β€˜π‘₯) = (𝑁 + 2) ∧ 𝑁 ∈ β„•0) β†’ 0 < (𝑁 + 2))
99 breq2 5148 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜π‘₯) = (𝑁 + 2) β†’ (0 < (β™―β€˜π‘₯) ↔ 0 < (𝑁 + 2)))
10099adantr 479 . . . . . . . . . . . . . . . . . . 19 (((β™―β€˜π‘₯) = (𝑁 + 2) ∧ 𝑁 ∈ β„•0) β†’ (0 < (β™―β€˜π‘₯) ↔ 0 < (𝑁 + 2)))
10198, 100mpbird 256 . . . . . . . . . . . . . . . . . 18 (((β™―β€˜π‘₯) = (𝑁 + 2) ∧ 𝑁 ∈ β„•0) β†’ 0 < (β™―β€˜π‘₯))
102 hashgt0n0 14351 . . . . . . . . . . . . . . . . . 18 ((π‘₯ ∈ Word 𝑉 ∧ 0 < (β™―β€˜π‘₯)) β†’ π‘₯ β‰  βˆ…)
103101, 102sylan2 591 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ 𝑁 ∈ β„•0)) β†’ π‘₯ β‰  βˆ…)
104103exp32 419 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ Word 𝑉 β†’ ((β™―β€˜π‘₯) = (𝑁 + 2) β†’ (𝑁 ∈ β„•0 β†’ π‘₯ β‰  βˆ…)))
105104com12 32 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘₯) = (𝑁 + 2) β†’ (π‘₯ ∈ Word 𝑉 β†’ (𝑁 ∈ β„•0 β†’ π‘₯ β‰  βˆ…)))
1061053ad2ant1 1130 . . . . . . . . . . . . . 14 (((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸) β†’ (π‘₯ ∈ Word 𝑉 β†’ (𝑁 ∈ β„•0 β†’ π‘₯ β‰  βˆ…)))
107106impcom 406 . . . . . . . . . . . . 13 ((π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸)) β†’ (𝑁 ∈ β„•0 β†’ π‘₯ β‰  βˆ…))
108107adantl 480 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) β†’ (𝑁 ∈ β„•0 β†’ π‘₯ β‰  βˆ…))
109108imp 405 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) β†’ π‘₯ β‰  βˆ…)
11078, 97, 109jca32 514 . . . . . . . . . 10 ((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) β†’ ((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) ∧ (𝑑 β‰  βˆ… ∧ π‘₯ β‰  βˆ…)))
111110adantr 479 . . . . . . . . 9 (((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)) β†’ ((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) ∧ (𝑑 β‰  βˆ… ∧ π‘₯ β‰  βˆ…)))
112 simpl 481 . . . . . . . . . . . 12 ((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) β†’ 𝑑 ∈ Word 𝑉)
113112adantr 479 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) ∧ (𝑑 β‰  βˆ… ∧ π‘₯ β‰  βˆ…)) β†’ 𝑑 ∈ Word 𝑉)
114 simpr 483 . . . . . . . . . . . 12 ((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) β†’ π‘₯ ∈ Word 𝑉)
115114adantr 479 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) ∧ (𝑑 β‰  βˆ… ∧ π‘₯ β‰  βˆ…)) β†’ π‘₯ ∈ Word 𝑉)
116 hashneq0 14350 . . . . . . . . . . . . . . . 16 (𝑑 ∈ Word 𝑉 β†’ (0 < (β™―β€˜π‘‘) ↔ 𝑑 β‰  βˆ…))
117116biimprd 247 . . . . . . . . . . . . . . 15 (𝑑 ∈ Word 𝑉 β†’ (𝑑 β‰  βˆ… β†’ 0 < (β™―β€˜π‘‘)))
118117adantr 479 . . . . . . . . . . . . . 14 ((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) β†’ (𝑑 β‰  βˆ… β†’ 0 < (β™―β€˜π‘‘)))
119118com12 32 . . . . . . . . . . . . 13 (𝑑 β‰  βˆ… β†’ ((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) β†’ 0 < (β™―β€˜π‘‘)))
120119adantr 479 . . . . . . . . . . . 12 ((𝑑 β‰  βˆ… ∧ π‘₯ β‰  βˆ…) β†’ ((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) β†’ 0 < (β™―β€˜π‘‘)))
121120impcom 406 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) ∧ (𝑑 β‰  βˆ… ∧ π‘₯ β‰  βˆ…)) β†’ 0 < (β™―β€˜π‘‘))
122 pfxsuff1eqwrdeq 14676 . . . . . . . . . . 11 ((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉 ∧ 0 < (β™―β€˜π‘‘)) β†’ (𝑑 = π‘₯ ↔ ((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ ((𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)))))
123113, 115, 121, 122syl3anc 1368 . . . . . . . . . 10 (((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) ∧ (𝑑 β‰  βˆ… ∧ π‘₯ β‰  βˆ…)) β†’ (𝑑 = π‘₯ ↔ ((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ ((𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)))))
124 ancom 459 . . . . . . . . . . . 12 (((𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)) ↔ ((lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) ∧ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1))))
125124anbi2i 621 . . . . . . . . . . 11 (((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ ((𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯))) ↔ ((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ ((lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) ∧ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
126 3anass 1092 . . . . . . . . . . 11 (((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) ∧ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1))) ↔ ((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ ((lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) ∧ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
127125, 126bitr4i 277 . . . . . . . . . 10 (((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ ((𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯))) ↔ ((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) ∧ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1))))
128123, 127bitrdi 286 . . . . . . . . 9 (((𝑑 ∈ Word 𝑉 ∧ π‘₯ ∈ Word 𝑉) ∧ (𝑑 β‰  βˆ… ∧ π‘₯ β‰  βˆ…)) β†’ (𝑑 = π‘₯ ↔ ((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) ∧ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
129111, 128syl 17 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)) β†’ (𝑑 = π‘₯ ↔ ((β™―β€˜π‘‘) = (β™―β€˜π‘₯) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) ∧ (𝑑 prefix ((β™―β€˜π‘‘) βˆ’ 1)) = (π‘₯ prefix ((β™―β€˜π‘‘) βˆ’ 1)))))
13040, 41, 74, 129mpbir3and 1339 . . . . . . 7 (((((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) ∧ 𝑁 ∈ β„•0) ∧ (lastSβ€˜π‘‘) = (lastSβ€˜π‘₯)) β†’ 𝑑 = π‘₯)
131130exp31 418 . . . . . 6 (((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) ∧ (π‘₯ ∈ Word 𝑉 ∧ ((β™―β€˜π‘₯) = (𝑁 + 2) ∧ (π‘₯ prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘₯)} ∈ 𝐸))) β†’ (𝑁 ∈ β„•0 β†’ ((lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) β†’ 𝑑 = π‘₯)))
13222, 30, 131syl2anb 596 . . . . 5 ((𝑑 ∈ 𝐷 ∧ π‘₯ ∈ 𝐷) β†’ (𝑁 ∈ β„•0 β†’ ((lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) β†’ 𝑑 = π‘₯)))
133132impcom 406 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ 𝐷 ∧ π‘₯ ∈ 𝐷)) β†’ ((lastSβ€˜π‘‘) = (lastSβ€˜π‘₯) β†’ 𝑑 = π‘₯))
13414, 133sylbid 239 . . 3 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ 𝐷 ∧ π‘₯ ∈ 𝐷)) β†’ ((πΉβ€˜π‘‘) = (πΉβ€˜π‘₯) β†’ 𝑑 = π‘₯))
135134ralrimivva 3191 . 2 (𝑁 ∈ β„•0 β†’ βˆ€π‘‘ ∈ 𝐷 βˆ€π‘₯ ∈ 𝐷 ((πΉβ€˜π‘‘) = (πΉβ€˜π‘₯) β†’ 𝑑 = π‘₯))
136 dff13 7259 . 2 (𝐹:𝐷–1-1→𝑅 ↔ (𝐹:π·βŸΆπ‘… ∧ βˆ€π‘‘ ∈ 𝐷 βˆ€π‘₯ ∈ 𝐷 ((πΉβ€˜π‘‘) = (πΉβ€˜π‘₯) β†’ 𝑑 = π‘₯)))
1376, 135, 136sylanbrc 581 1 (𝑁 ∈ β„•0 β†’ 𝐹:𝐷–1-1→𝑅)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  {crab 3419  βˆ…c0 4319  {cpr 4627   class class class wbr 5144   ↦ cmpt 5227  βŸΆwf 6539  β€“1-1β†’wf1 6540  β€˜cfv 6543  (class class class)co 7413  β„cr 11132  0cc0 11133  1c1 11134   + caddc 11136   < clt 11273   βˆ’ cmin 11469  2c2 12292  β„•0cn0 12497  β™―chash 14316  Word cword 14491  lastSclsw 14539   prefix cpfx 14647  Vtxcvtx 28848  Edgcedg 28899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-lsw 14540  df-s1 14573  df-substr 14618  df-pfx 14648
This theorem is referenced by:  wwlksnextbij0  29751
  Copyright terms: Public domain W3C validator