MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextinj Structured version   Visualization version   GIF version

Theorem wwlksnextinj 29932
Description: Lemma for wwlksnextbij 29935. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextinj (𝑁 ∈ ℕ0𝐹:𝐷1-1𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸   𝑤,𝐸   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉   𝑤,𝑉   𝑛,𝑊   𝑡,𝑛
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑁(𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextinj
Dummy variables 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.v . . 3 𝑉 = (Vtx‘𝐺)
2 wwlksnextbij0.e . . 3 𝐸 = (Edg‘𝐺)
3 wwlksnextbij0.d . . 3 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
4 wwlksnextbij0.r . . 3 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
5 wwlksnextbij0.f . . 3 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
61, 2, 3, 4, 5wwlksnextfun 29931 . 2 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
7 fveq2 6920 . . . . . . 7 (𝑡 = 𝑑 → (lastS‘𝑡) = (lastS‘𝑑))
8 fvex 6933 . . . . . . 7 (lastS‘𝑑) ∈ V
97, 5, 8fvmpt 7029 . . . . . 6 (𝑑𝐷 → (𝐹𝑑) = (lastS‘𝑑))
10 fveq2 6920 . . . . . . 7 (𝑡 = 𝑥 → (lastS‘𝑡) = (lastS‘𝑥))
11 fvex 6933 . . . . . . 7 (lastS‘𝑥) ∈ V
1210, 5, 11fvmpt 7029 . . . . . 6 (𝑥𝐷 → (𝐹𝑥) = (lastS‘𝑥))
139, 12eqeqan12d 2754 . . . . 5 ((𝑑𝐷𝑥𝐷) → ((𝐹𝑑) = (𝐹𝑥) ↔ (lastS‘𝑑) = (lastS‘𝑥)))
1413adantl 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((𝐹𝑑) = (𝐹𝑥) ↔ (lastS‘𝑑) = (lastS‘𝑥)))
15 fveqeq2 6929 . . . . . . . 8 (𝑤 = 𝑑 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑑) = (𝑁 + 2)))
16 oveq1 7455 . . . . . . . . 9 (𝑤 = 𝑑 → (𝑤 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1)))
1716eqeq1d 2742 . . . . . . . 8 (𝑤 = 𝑑 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑑 prefix (𝑁 + 1)) = 𝑊))
18 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑑 → (lastS‘𝑤) = (lastS‘𝑑))
1918preq2d 4765 . . . . . . . . 9 (𝑤 = 𝑑 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑑)})
2019eleq1d 2829 . . . . . . . 8 (𝑤 = 𝑑 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))
2115, 17, 203anbi123d 1436 . . . . . . 7 (𝑤 = 𝑑 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
2221, 3elrab2 3711 . . . . . 6 (𝑑𝐷 ↔ (𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
23 fveqeq2 6929 . . . . . . . 8 (𝑤 = 𝑥 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑥) = (𝑁 + 2)))
24 oveq1 7455 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
2524eqeq1d 2742 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑥 prefix (𝑁 + 1)) = 𝑊))
26 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑥 → (lastS‘𝑤) = (lastS‘𝑥))
2726preq2d 4765 . . . . . . . . 9 (𝑤 = 𝑥 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑥)})
2827eleq1d 2829 . . . . . . . 8 (𝑤 = 𝑥 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))
2923, 25, 283anbi123d 1436 . . . . . . 7 (𝑤 = 𝑥 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)))
3029, 3elrab2 3711 . . . . . 6 (𝑥𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)))
31 eqtr3 2766 . . . . . . . . . . . . . . . . 17 (((♯‘𝑑) = (𝑁 + 2) ∧ (♯‘𝑥) = (𝑁 + 2)) → (♯‘𝑑) = (♯‘𝑥))
3231expcom 413 . . . . . . . . . . . . . . . 16 ((♯‘𝑥) = (𝑁 + 2) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
33323ad2ant1 1133 . . . . . . . . . . . . . . 15 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
3433adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
3534com12 32 . . . . . . . . . . . . 13 ((♯‘𝑑) = (𝑁 + 2) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
36353ad2ant1 1133 . . . . . . . . . . . 12 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
3736adantl 481 . . . . . . . . . . 11 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
3837imp 406 . . . . . . . . . 10 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (♯‘𝑑) = (♯‘𝑥))
3938adantr 480 . . . . . . . . 9 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (♯‘𝑑) = (♯‘𝑥))
4039adantr 480 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (♯‘𝑑) = (♯‘𝑥))
41 simpr 484 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (lastS‘𝑑) = (lastS‘𝑥))
42 eqtr3 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊) → (𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
43 1e2m1 12420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 = (2 − 1)
4443a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 1 = (2 − 1))
4544oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (𝑁 + (2 − 1)))
46 nn0cn 12563 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
47 2cnd 12371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
48 1cnd 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
4946, 47, 48addsubassd 11667 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
5045, 49eqtr4d 2783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((𝑁 + 2) − 1))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → (𝑁 + 1) = ((𝑁 + 2) − 1))
52 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑑) = (𝑁 + 2) → ((♯‘𝑑) − 1) = ((𝑁 + 2) − 1))
5352eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑑) = (𝑁 + 2) → ((𝑁 + 1) = ((♯‘𝑑) − 1) ↔ (𝑁 + 1) = ((𝑁 + 2) − 1)))
5453adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑁 + 1) = ((♯‘𝑑) − 1) ↔ (𝑁 + 1) = ((𝑁 + 2) − 1)))
5551, 54mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → (𝑁 + 1) = ((♯‘𝑑) − 1))
56 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) = ((♯‘𝑑) − 1) → (𝑑 prefix (𝑁 + 1)) = (𝑑 prefix ((♯‘𝑑) − 1)))
57 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) = ((♯‘𝑑) − 1) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
5856, 57eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) = ((♯‘𝑑) − 1) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ↔ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
5955, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ↔ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
6059biimpd 229 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
6160ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((♯‘𝑑) = (𝑁 + 2) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6261com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6342, 62syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊) → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6463ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑑 prefix (𝑁 + 1)) = 𝑊 → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))))
6564com23 86 . . . . . . . . . . . . . . . . 17 ((𝑑 prefix (𝑁 + 1)) = 𝑊 → ((♯‘𝑑) = (𝑁 + 2) → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))))
6665impcom 407 . . . . . . . . . . . . . . . 16 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6766com12 32 . . . . . . . . . . . . . . 15 ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
68673ad2ant2 1134 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6968adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7069com12 32 . . . . . . . . . . . 12 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
71703adant3 1132 . . . . . . . . . . 11 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7271adantl 481 . . . . . . . . . 10 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7372imp31 417 . . . . . . . . 9 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
7473adantr 480 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
75 simpl 482 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → 𝑑 ∈ Word 𝑉)
76 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → 𝑥 ∈ Word 𝑉)
7775, 76anim12i 612 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉))
7877adantr 480 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉))
79 nn0re 12562 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
80 2re 12367 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
8180a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
82 nn0ge0 12578 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
83 2pos 12396 . . . . . . . . . . . . . . . . . . . . . 22 0 < 2
8483a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 < 2)
8579, 81, 82, 84addgegt0d 11863 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
8685adantl 481 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (𝑁 + 2))
87 breq2 5170 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑑) = (𝑁 + 2) → (0 < (♯‘𝑑) ↔ 0 < (𝑁 + 2)))
8887adantr 480 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → (0 < (♯‘𝑑) ↔ 0 < (𝑁 + 2)))
8986, 88mpbird 257 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (♯‘𝑑))
90 hashgt0n0 14414 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ Word 𝑉 ∧ 0 < (♯‘𝑑)) → 𝑑 ≠ ∅)
9189, 90sylan2 592 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)) → 𝑑 ≠ ∅)
9291exp32 420 . . . . . . . . . . . . . . . 16 (𝑑 ∈ Word 𝑉 → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
9392com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑑) = (𝑁 + 2) → (𝑑 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
94933ad2ant1 1133 . . . . . . . . . . . . . 14 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → (𝑑 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
9594impcom 407 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → (𝑁 ∈ ℕ0𝑑 ≠ ∅))
9695adantr 480 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0𝑑 ≠ ∅))
9796imp 406 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → 𝑑 ≠ ∅)
9885adantl 481 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (𝑁 + 2))
99 breq2 5170 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = (𝑁 + 2) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 2)))
10099adantr 480 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 2)))
10198, 100mpbird 257 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (♯‘𝑥))
102 hashgt0n0 14414 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ Word 𝑉 ∧ 0 < (♯‘𝑥)) → 𝑥 ≠ ∅)
103101, 102sylan2 592 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)) → 𝑥 ≠ ∅)
104103exp32 420 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word 𝑉 → ((♯‘𝑥) = (𝑁 + 2) → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
105104com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = (𝑁 + 2) → (𝑥 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
1061053ad2ant1 1133 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
107106impcom 407 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0𝑥 ≠ ∅))
108107adantl 481 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0𝑥 ≠ ∅))
109108imp 406 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → 𝑥 ≠ ∅)
11078, 97, 109jca32 515 . . . . . . . . . 10 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)))
111110adantr 480 . . . . . . . . 9 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)))
112 simpl 482 . . . . . . . . . . . 12 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 𝑑 ∈ Word 𝑉)
113112adantr 480 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 𝑑 ∈ Word 𝑉)
114 simpr 484 . . . . . . . . . . . 12 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 𝑥 ∈ Word 𝑉)
115114adantr 480 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ Word 𝑉)
116 hashneq0 14413 . . . . . . . . . . . . . . . 16 (𝑑 ∈ Word 𝑉 → (0 < (♯‘𝑑) ↔ 𝑑 ≠ ∅))
117116biimprd 248 . . . . . . . . . . . . . . 15 (𝑑 ∈ Word 𝑉 → (𝑑 ≠ ∅ → 0 < (♯‘𝑑)))
118117adantr 480 . . . . . . . . . . . . . 14 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → (𝑑 ≠ ∅ → 0 < (♯‘𝑑)))
119118com12 32 . . . . . . . . . . . . 13 (𝑑 ≠ ∅ → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 0 < (♯‘𝑑)))
120119adantr 480 . . . . . . . . . . . 12 ((𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 0 < (♯‘𝑑)))
121120impcom 407 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 0 < (♯‘𝑑))
122 pfxsuff1eqwrdeq 14747 . . . . . . . . . . 11 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉 ∧ 0 < (♯‘𝑑)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)))))
123113, 115, 121, 122syl3anc 1371 . . . . . . . . . 10 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)))))
124 ancom 460 . . . . . . . . . . . 12 (((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)) ↔ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
125124anbi2i 622 . . . . . . . . . . 11 (((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
126 3anass 1095 . . . . . . . . . . 11 (((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
127125, 126bitr4i 278 . . . . . . . . . 10 (((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
128123, 127bitrdi 287 . . . . . . . . 9 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
129111, 128syl 17 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
13040, 41, 74, 129mpbir3and 1342 . . . . . . 7 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → 𝑑 = 𝑥)
131130exp31 419 . . . . . 6 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0 → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥)))
13222, 30, 131syl2anb 597 . . . . 5 ((𝑑𝐷𝑥𝐷) → (𝑁 ∈ ℕ0 → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥)))
133132impcom 407 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥))
13414, 133sylbid 240 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥))
135134ralrimivva 3208 . 2 (𝑁 ∈ ℕ0 → ∀𝑑𝐷𝑥𝐷 ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥))
136 dff13 7292 . 2 (𝐹:𝐷1-1𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑑𝐷𝑥𝐷 ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥)))
1376, 135, 136sylanbrc 582 1 (𝑁 ∈ ℕ0𝐹:𝐷1-1𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  c0 4352  {cpr 4650   class class class wbr 5166  cmpt 5249  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  2c2 12348  0cn0 12553  chash 14379  Word cword 14562  lastSclsw 14610   prefix cpfx 14718  Vtxcvtx 29031  Edgcedg 29082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-s1 14644  df-substr 14689  df-pfx 14719
This theorem is referenced by:  wwlksnextbij0  29934
  Copyright terms: Public domain W3C validator