MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextinj Structured version   Visualization version   GIF version

Theorem wwlksnextinj 27390
Description: Lemma for wwlksnextbij 27398. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextinj (𝑁 ∈ ℕ0𝐹:𝐷1-1𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸   𝑤,𝐸   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉   𝑤,𝑉   𝑛,𝑊   𝑡,𝑛
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑁(𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextinj
Dummy variables 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.v . . 3 𝑉 = (Vtx‘𝐺)
2 wwlksnextbij0.e . . 3 𝐸 = (Edg‘𝐺)
3 wwlksnextbij0.d . . 3 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
4 wwlksnextbij0.r . . 3 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
5 wwlksnextbij0.f . . 3 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
61, 2, 3, 4, 5wwlksnextfun 27389 . 2 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
7 fveq2 6499 . . . . . . 7 (𝑡 = 𝑑 → (lastS‘𝑡) = (lastS‘𝑑))
8 fvex 6512 . . . . . . 7 (lastS‘𝑑) ∈ V
97, 5, 8fvmpt 6595 . . . . . 6 (𝑑𝐷 → (𝐹𝑑) = (lastS‘𝑑))
10 fveq2 6499 . . . . . . 7 (𝑡 = 𝑥 → (lastS‘𝑡) = (lastS‘𝑥))
11 fvex 6512 . . . . . . 7 (lastS‘𝑥) ∈ V
1210, 5, 11fvmpt 6595 . . . . . 6 (𝑥𝐷 → (𝐹𝑥) = (lastS‘𝑥))
139, 12eqeqan12d 2794 . . . . 5 ((𝑑𝐷𝑥𝐷) → ((𝐹𝑑) = (𝐹𝑥) ↔ (lastS‘𝑑) = (lastS‘𝑥)))
1413adantl 474 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((𝐹𝑑) = (𝐹𝑥) ↔ (lastS‘𝑑) = (lastS‘𝑥)))
15 fveqeq2 6508 . . . . . . . 8 (𝑤 = 𝑑 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑑) = (𝑁 + 2)))
16 oveq1 6983 . . . . . . . . 9 (𝑤 = 𝑑 → (𝑤 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1)))
1716eqeq1d 2780 . . . . . . . 8 (𝑤 = 𝑑 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑑 prefix (𝑁 + 1)) = 𝑊))
18 fveq2 6499 . . . . . . . . . 10 (𝑤 = 𝑑 → (lastS‘𝑤) = (lastS‘𝑑))
1918preq2d 4550 . . . . . . . . 9 (𝑤 = 𝑑 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑑)})
2019eleq1d 2850 . . . . . . . 8 (𝑤 = 𝑑 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))
2115, 17, 203anbi123d 1415 . . . . . . 7 (𝑤 = 𝑑 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
2221, 3elrab2 3599 . . . . . 6 (𝑑𝐷 ↔ (𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
23 fveqeq2 6508 . . . . . . . 8 (𝑤 = 𝑥 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑥) = (𝑁 + 2)))
24 oveq1 6983 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
2524eqeq1d 2780 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑥 prefix (𝑁 + 1)) = 𝑊))
26 fveq2 6499 . . . . . . . . . 10 (𝑤 = 𝑥 → (lastS‘𝑤) = (lastS‘𝑥))
2726preq2d 4550 . . . . . . . . 9 (𝑤 = 𝑥 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑥)})
2827eleq1d 2850 . . . . . . . 8 (𝑤 = 𝑥 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))
2923, 25, 283anbi123d 1415 . . . . . . 7 (𝑤 = 𝑥 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)))
3029, 3elrab2 3599 . . . . . 6 (𝑥𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)))
31 eqtr3 2801 . . . . . . . . . . . . . . . . 17 (((♯‘𝑑) = (𝑁 + 2) ∧ (♯‘𝑥) = (𝑁 + 2)) → (♯‘𝑑) = (♯‘𝑥))
3231expcom 406 . . . . . . . . . . . . . . . 16 ((♯‘𝑥) = (𝑁 + 2) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
33323ad2ant1 1113 . . . . . . . . . . . . . . 15 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
3433adantl 474 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
3534com12 32 . . . . . . . . . . . . 13 ((♯‘𝑑) = (𝑁 + 2) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
36353ad2ant1 1113 . . . . . . . . . . . 12 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
3736adantl 474 . . . . . . . . . . 11 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
3837imp 398 . . . . . . . . . 10 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (♯‘𝑑) = (♯‘𝑥))
3938adantr 473 . . . . . . . . 9 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (♯‘𝑑) = (♯‘𝑥))
4039adantr 473 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (♯‘𝑑) = (♯‘𝑥))
41 simpr 477 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (lastS‘𝑑) = (lastS‘𝑥))
42 eqtr3 2801 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊) → (𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
43 1e2m1 11574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 = (2 − 1)
4443a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 1 = (2 − 1))
4544oveq2d 6992 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (𝑁 + (2 − 1)))
46 nn0cn 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
47 2cnd 11518 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
48 1cnd 10434 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
4946, 47, 48addsubassd 10818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
5045, 49eqtr4d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((𝑁 + 2) − 1))
5150adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → (𝑁 + 1) = ((𝑁 + 2) − 1))
52 oveq1 6983 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑑) = (𝑁 + 2) → ((♯‘𝑑) − 1) = ((𝑁 + 2) − 1))
5352eqeq2d 2788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑑) = (𝑁 + 2) → ((𝑁 + 1) = ((♯‘𝑑) − 1) ↔ (𝑁 + 1) = ((𝑁 + 2) − 1)))
5453adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑁 + 1) = ((♯‘𝑑) − 1) ↔ (𝑁 + 1) = ((𝑁 + 2) − 1)))
5551, 54mpbird 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → (𝑁 + 1) = ((♯‘𝑑) − 1))
56 oveq2 6984 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) = ((♯‘𝑑) − 1) → (𝑑 prefix (𝑁 + 1)) = (𝑑 prefix ((♯‘𝑑) − 1)))
57 oveq2 6984 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) = ((♯‘𝑑) − 1) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
5856, 57eqeq12d 2793 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) = ((♯‘𝑑) − 1) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ↔ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
5955, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ↔ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
6059biimpd 221 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
6160ex 405 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((♯‘𝑑) = (𝑁 + 2) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6261com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6342, 62syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊) → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6463ex 405 . . . . . . . . . . . . . . . . . 18 ((𝑑 prefix (𝑁 + 1)) = 𝑊 → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))))
6564com23 86 . . . . . . . . . . . . . . . . 17 ((𝑑 prefix (𝑁 + 1)) = 𝑊 → ((♯‘𝑑) = (𝑁 + 2) → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))))
6665impcom 399 . . . . . . . . . . . . . . . 16 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6766com12 32 . . . . . . . . . . . . . . 15 ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
68673ad2ant2 1114 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6968adantl 474 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7069com12 32 . . . . . . . . . . . 12 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
71703adant3 1112 . . . . . . . . . . 11 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7271adantl 474 . . . . . . . . . 10 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7372imp31 410 . . . . . . . . 9 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
7473adantr 473 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
75 simpl 475 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → 𝑑 ∈ Word 𝑉)
76 simpl 475 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → 𝑥 ∈ Word 𝑉)
7775, 76anim12i 603 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉))
7877adantr 473 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉))
79 nn0re 11717 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
80 2re 11514 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
8180a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
82 nn0ge0 11734 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
83 2pos 11550 . . . . . . . . . . . . . . . . . . . . . 22 0 < 2
8483a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 < 2)
8579, 81, 82, 84addgegt0d 11014 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
8685adantl 474 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (𝑁 + 2))
87 breq2 4933 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑑) = (𝑁 + 2) → (0 < (♯‘𝑑) ↔ 0 < (𝑁 + 2)))
8887adantr 473 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → (0 < (♯‘𝑑) ↔ 0 < (𝑁 + 2)))
8986, 88mpbird 249 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (♯‘𝑑))
90 hashgt0n0 13541 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ Word 𝑉 ∧ 0 < (♯‘𝑑)) → 𝑑 ≠ ∅)
9189, 90sylan2 583 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)) → 𝑑 ≠ ∅)
9291exp32 413 . . . . . . . . . . . . . . . 16 (𝑑 ∈ Word 𝑉 → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
9392com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑑) = (𝑁 + 2) → (𝑑 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
94933ad2ant1 1113 . . . . . . . . . . . . . 14 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → (𝑑 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
9594impcom 399 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → (𝑁 ∈ ℕ0𝑑 ≠ ∅))
9695adantr 473 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0𝑑 ≠ ∅))
9796imp 398 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → 𝑑 ≠ ∅)
9885adantl 474 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (𝑁 + 2))
99 breq2 4933 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = (𝑁 + 2) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 2)))
10099adantr 473 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 2)))
10198, 100mpbird 249 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (♯‘𝑥))
102 hashgt0n0 13541 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ Word 𝑉 ∧ 0 < (♯‘𝑥)) → 𝑥 ≠ ∅)
103101, 102sylan2 583 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)) → 𝑥 ≠ ∅)
104103exp32 413 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word 𝑉 → ((♯‘𝑥) = (𝑁 + 2) → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
105104com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = (𝑁 + 2) → (𝑥 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
1061053ad2ant1 1113 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
107106impcom 399 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0𝑥 ≠ ∅))
108107adantl 474 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0𝑥 ≠ ∅))
109108imp 398 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → 𝑥 ≠ ∅)
11078, 97, 109jca32 508 . . . . . . . . . 10 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)))
111110adantr 473 . . . . . . . . 9 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)))
112 simpl 475 . . . . . . . . . . . 12 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 𝑑 ∈ Word 𝑉)
113112adantr 473 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 𝑑 ∈ Word 𝑉)
114 simpr 477 . . . . . . . . . . . 12 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 𝑥 ∈ Word 𝑉)
115114adantr 473 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ Word 𝑉)
116 hashneq0 13540 . . . . . . . . . . . . . . . 16 (𝑑 ∈ Word 𝑉 → (0 < (♯‘𝑑) ↔ 𝑑 ≠ ∅))
117116biimprd 240 . . . . . . . . . . . . . . 15 (𝑑 ∈ Word 𝑉 → (𝑑 ≠ ∅ → 0 < (♯‘𝑑)))
118117adantr 473 . . . . . . . . . . . . . 14 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → (𝑑 ≠ ∅ → 0 < (♯‘𝑑)))
119118com12 32 . . . . . . . . . . . . 13 (𝑑 ≠ ∅ → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 0 < (♯‘𝑑)))
120119adantr 473 . . . . . . . . . . . 12 ((𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 0 < (♯‘𝑑)))
121120impcom 399 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 0 < (♯‘𝑑))
122 pfxsuff1eqwrdeq 13881 . . . . . . . . . . 11 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉 ∧ 0 < (♯‘𝑑)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)))))
123113, 115, 121, 122syl3anc 1351 . . . . . . . . . 10 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)))))
124 ancom 453 . . . . . . . . . . . 12 (((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)) ↔ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
125124anbi2i 613 . . . . . . . . . . 11 (((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
126 3anass 1076 . . . . . . . . . . 11 (((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
127125, 126bitr4i 270 . . . . . . . . . 10 (((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
128123, 127syl6bb 279 . . . . . . . . 9 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
129111, 128syl 17 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
13040, 41, 74, 129mpbir3and 1322 . . . . . . 7 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → 𝑑 = 𝑥)
131130exp31 412 . . . . . 6 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0 → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥)))
13222, 30, 131syl2anb 588 . . . . 5 ((𝑑𝐷𝑥𝐷) → (𝑁 ∈ ℕ0 → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥)))
133132impcom 399 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥))
13414, 133sylbid 232 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥))
135134ralrimivva 3141 . 2 (𝑁 ∈ ℕ0 → ∀𝑑𝐷𝑥𝐷 ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥))
136 dff13 6838 . 2 (𝐹:𝐷1-1𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑑𝐷𝑥𝐷 ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥)))
1376, 135, 136sylanbrc 575 1 (𝑁 ∈ ℕ0𝐹:𝐷1-1𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wral 3088  {crab 3092  c0 4178  {cpr 4443   class class class wbr 4929  cmpt 5008  wf 6184  1-1wf1 6185  cfv 6188  (class class class)co 6976  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   < clt 10474  cmin 10670  2c2 11495  0cn0 11707  chash 13505  Word cword 13672  lastSclsw 13725   prefix cpfx 13852  Vtxcvtx 26484  Edgcedg 26535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-fz 12709  df-fzo 12850  df-hash 13506  df-word 13673  df-lsw 13726  df-s1 13759  df-substr 13804  df-pfx 13853
This theorem is referenced by:  wwlksnextbij0  27392
  Copyright terms: Public domain W3C validator