MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextinj Structured version   Visualization version   GIF version

Theorem wwlksnextinj 29919
Description: Lemma for wwlksnextbij 29922. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextinj (𝑁 ∈ ℕ0𝐹:𝐷1-1𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸   𝑤,𝐸   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉   𝑤,𝑉   𝑛,𝑊   𝑡,𝑛
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑁(𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextinj
Dummy variables 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.v . . 3 𝑉 = (Vtx‘𝐺)
2 wwlksnextbij0.e . . 3 𝐸 = (Edg‘𝐺)
3 wwlksnextbij0.d . . 3 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
4 wwlksnextbij0.r . . 3 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
5 wwlksnextbij0.f . . 3 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
61, 2, 3, 4, 5wwlksnextfun 29918 . 2 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
7 fveq2 6906 . . . . . . 7 (𝑡 = 𝑑 → (lastS‘𝑡) = (lastS‘𝑑))
8 fvex 6919 . . . . . . 7 (lastS‘𝑑) ∈ V
97, 5, 8fvmpt 7016 . . . . . 6 (𝑑𝐷 → (𝐹𝑑) = (lastS‘𝑑))
10 fveq2 6906 . . . . . . 7 (𝑡 = 𝑥 → (lastS‘𝑡) = (lastS‘𝑥))
11 fvex 6919 . . . . . . 7 (lastS‘𝑥) ∈ V
1210, 5, 11fvmpt 7016 . . . . . 6 (𝑥𝐷 → (𝐹𝑥) = (lastS‘𝑥))
139, 12eqeqan12d 2751 . . . . 5 ((𝑑𝐷𝑥𝐷) → ((𝐹𝑑) = (𝐹𝑥) ↔ (lastS‘𝑑) = (lastS‘𝑥)))
1413adantl 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((𝐹𝑑) = (𝐹𝑥) ↔ (lastS‘𝑑) = (lastS‘𝑥)))
15 fveqeq2 6915 . . . . . . . 8 (𝑤 = 𝑑 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑑) = (𝑁 + 2)))
16 oveq1 7438 . . . . . . . . 9 (𝑤 = 𝑑 → (𝑤 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1)))
1716eqeq1d 2739 . . . . . . . 8 (𝑤 = 𝑑 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑑 prefix (𝑁 + 1)) = 𝑊))
18 fveq2 6906 . . . . . . . . . 10 (𝑤 = 𝑑 → (lastS‘𝑤) = (lastS‘𝑑))
1918preq2d 4740 . . . . . . . . 9 (𝑤 = 𝑑 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑑)})
2019eleq1d 2826 . . . . . . . 8 (𝑤 = 𝑑 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))
2115, 17, 203anbi123d 1438 . . . . . . 7 (𝑤 = 𝑑 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
2221, 3elrab2 3695 . . . . . 6 (𝑑𝐷 ↔ (𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
23 fveqeq2 6915 . . . . . . . 8 (𝑤 = 𝑥 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑥) = (𝑁 + 2)))
24 oveq1 7438 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
2524eqeq1d 2739 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑥 prefix (𝑁 + 1)) = 𝑊))
26 fveq2 6906 . . . . . . . . . 10 (𝑤 = 𝑥 → (lastS‘𝑤) = (lastS‘𝑥))
2726preq2d 4740 . . . . . . . . 9 (𝑤 = 𝑥 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑥)})
2827eleq1d 2826 . . . . . . . 8 (𝑤 = 𝑥 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))
2923, 25, 283anbi123d 1438 . . . . . . 7 (𝑤 = 𝑥 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)))
3029, 3elrab2 3695 . . . . . 6 (𝑥𝐷 ↔ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)))
31 eqtr3 2763 . . . . . . . . . . . . . . . . 17 (((♯‘𝑑) = (𝑁 + 2) ∧ (♯‘𝑥) = (𝑁 + 2)) → (♯‘𝑑) = (♯‘𝑥))
3231expcom 413 . . . . . . . . . . . . . . . 16 ((♯‘𝑥) = (𝑁 + 2) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
33323ad2ant1 1134 . . . . . . . . . . . . . . 15 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
3433adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → ((♯‘𝑑) = (𝑁 + 2) → (♯‘𝑑) = (♯‘𝑥)))
3534com12 32 . . . . . . . . . . . . 13 ((♯‘𝑑) = (𝑁 + 2) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
36353ad2ant1 1134 . . . . . . . . . . . 12 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
3736adantl 481 . . . . . . . . . . 11 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (♯‘𝑑) = (♯‘𝑥)))
3837imp 406 . . . . . . . . . 10 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (♯‘𝑑) = (♯‘𝑥))
3938adantr 480 . . . . . . . . 9 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (♯‘𝑑) = (♯‘𝑥))
4039adantr 480 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (♯‘𝑑) = (♯‘𝑥))
41 simpr 484 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (lastS‘𝑑) = (lastS‘𝑥))
42 eqtr3 2763 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊) → (𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
43 1e2m1 12393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 = (2 − 1)
4443a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 1 = (2 − 1))
4544oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (𝑁 + (2 − 1)))
46 nn0cn 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
47 2cnd 12344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
48 1cnd 11256 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
4946, 47, 48addsubassd 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0 → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
5045, 49eqtr4d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((𝑁 + 2) − 1))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → (𝑁 + 1) = ((𝑁 + 2) − 1))
52 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑑) = (𝑁 + 2) → ((♯‘𝑑) − 1) = ((𝑁 + 2) − 1))
5352eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑑) = (𝑁 + 2) → ((𝑁 + 1) = ((♯‘𝑑) − 1) ↔ (𝑁 + 1) = ((𝑁 + 2) − 1)))
5453adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑁 + 1) = ((♯‘𝑑) − 1) ↔ (𝑁 + 1) = ((𝑁 + 2) − 1)))
5551, 54mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → (𝑁 + 1) = ((♯‘𝑑) − 1))
56 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) = ((♯‘𝑑) − 1) → (𝑑 prefix (𝑁 + 1)) = (𝑑 prefix ((♯‘𝑑) − 1)))
57 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) = ((♯‘𝑑) − 1) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
5856, 57eqeq12d 2753 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) = ((♯‘𝑑) − 1) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ↔ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
5955, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ↔ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
6059biimpd 229 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑑) = (𝑁 + 2)) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
6160ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((♯‘𝑑) = (𝑁 + 2) → ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6261com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6342, 62syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊) → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6463ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑑 prefix (𝑁 + 1)) = 𝑊 → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))))
6564com23 86 . . . . . . . . . . . . . . . . 17 ((𝑑 prefix (𝑁 + 1)) = 𝑊 → ((♯‘𝑑) = (𝑁 + 2) → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))))
6665impcom 407 . . . . . . . . . . . . . . . 16 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6766com12 32 . . . . . . . . . . . . . . 15 ((𝑥 prefix (𝑁 + 1)) = 𝑊 → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
68673ad2ant2 1135 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
6968adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7069com12 32 . . . . . . . . . . . 12 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
71703adant3 1133 . . . . . . . . . . 11 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7271adantl 481 . . . . . . . . . 10 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
7372imp31 417 . . . . . . . . 9 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
7473adantr 480 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))
75 simpl 482 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → 𝑑 ∈ Word 𝑉)
76 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → 𝑥 ∈ Word 𝑉)
7775, 76anim12i 613 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉))
7877adantr 480 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → (𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉))
79 nn0re 12535 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
80 2re 12340 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
8180a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
82 nn0ge0 12551 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
83 2pos 12369 . . . . . . . . . . . . . . . . . . . . . 22 0 < 2
8483a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 < 2)
8579, 81, 82, 84addgegt0d 11836 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
8685adantl 481 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (𝑁 + 2))
87 breq2 5147 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑑) = (𝑁 + 2) → (0 < (♯‘𝑑) ↔ 0 < (𝑁 + 2)))
8887adantr 480 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → (0 < (♯‘𝑑) ↔ 0 < (𝑁 + 2)))
8986, 88mpbird 257 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (♯‘𝑑))
90 hashgt0n0 14404 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ Word 𝑉 ∧ 0 < (♯‘𝑑)) → 𝑑 ≠ ∅)
9189, 90sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)) → 𝑑 ≠ ∅)
9291exp32 420 . . . . . . . . . . . . . . . 16 (𝑑 ∈ Word 𝑉 → ((♯‘𝑑) = (𝑁 + 2) → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
9392com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑑) = (𝑁 + 2) → (𝑑 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
94933ad2ant1 1134 . . . . . . . . . . . . . 14 (((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) → (𝑑 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑑 ≠ ∅)))
9594impcom 407 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) → (𝑁 ∈ ℕ0𝑑 ≠ ∅))
9695adantr 480 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0𝑑 ≠ ∅))
9796imp 406 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → 𝑑 ≠ ∅)
9885adantl 481 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (𝑁 + 2))
99 breq2 5147 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑥) = (𝑁 + 2) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 2)))
10099adantr 480 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 2)))
10198, 100mpbird 257 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0) → 0 < (♯‘𝑥))
102 hashgt0n0 14404 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ Word 𝑉 ∧ 0 < (♯‘𝑥)) → 𝑥 ≠ ∅)
103101, 102sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑁 ∈ ℕ0)) → 𝑥 ≠ ∅)
104103exp32 420 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word 𝑉 → ((♯‘𝑥) = (𝑁 + 2) → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
105104com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = (𝑁 + 2) → (𝑥 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
1061053ad2ant1 1134 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸) → (𝑥 ∈ Word 𝑉 → (𝑁 ∈ ℕ0𝑥 ≠ ∅)))
107106impcom 407 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸)) → (𝑁 ∈ ℕ0𝑥 ≠ ∅))
108107adantl 481 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0𝑥 ≠ ∅))
109108imp 406 . . . . . . . . . . 11 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → 𝑥 ≠ ∅)
11078, 97, 109jca32 515 . . . . . . . . . 10 ((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)))
111110adantr 480 . . . . . . . . 9 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)))
112 simpl 482 . . . . . . . . . . . 12 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 𝑑 ∈ Word 𝑉)
113112adantr 480 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 𝑑 ∈ Word 𝑉)
114 simpr 484 . . . . . . . . . . . 12 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 𝑥 ∈ Word 𝑉)
115114adantr 480 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ Word 𝑉)
116 hashneq0 14403 . . . . . . . . . . . . . . . 16 (𝑑 ∈ Word 𝑉 → (0 < (♯‘𝑑) ↔ 𝑑 ≠ ∅))
117116biimprd 248 . . . . . . . . . . . . . . 15 (𝑑 ∈ Word 𝑉 → (𝑑 ≠ ∅ → 0 < (♯‘𝑑)))
118117adantr 480 . . . . . . . . . . . . . 14 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → (𝑑 ≠ ∅ → 0 < (♯‘𝑑)))
119118com12 32 . . . . . . . . . . . . 13 (𝑑 ≠ ∅ → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 0 < (♯‘𝑑)))
120119adantr 480 . . . . . . . . . . . 12 ((𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅) → ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) → 0 < (♯‘𝑑)))
121120impcom 407 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → 0 < (♯‘𝑑))
122 pfxsuff1eqwrdeq 14737 . . . . . . . . . . 11 ((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉 ∧ 0 < (♯‘𝑑)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)))))
123113, 115, 121, 122syl3anc 1373 . . . . . . . . . 10 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)))))
124 ancom 460 . . . . . . . . . . . 12 (((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥)) ↔ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
125124anbi2i 623 . . . . . . . . . . 11 (((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
126 3anass 1095 . . . . . . . . . . 11 (((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ ((lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
127125, 126bitr4i 278 . . . . . . . . . 10 (((♯‘𝑑) = (♯‘𝑥) ∧ ((𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)) ∧ (lastS‘𝑑) = (lastS‘𝑥))) ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1))))
128123, 127bitrdi 287 . . . . . . . . 9 (((𝑑 ∈ Word 𝑉𝑥 ∈ Word 𝑉) ∧ (𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
129111, 128syl 17 . . . . . . . 8 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → (𝑑 = 𝑥 ↔ ((♯‘𝑑) = (♯‘𝑥) ∧ (lastS‘𝑑) = (lastS‘𝑥) ∧ (𝑑 prefix ((♯‘𝑑) − 1)) = (𝑥 prefix ((♯‘𝑑) − 1)))))
13040, 41, 74, 129mpbir3and 1343 . . . . . . 7 (((((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) ∧ 𝑁 ∈ ℕ0) ∧ (lastS‘𝑑) = (lastS‘𝑥)) → 𝑑 = 𝑥)
131130exp31 419 . . . . . 6 (((𝑑 ∈ Word 𝑉 ∧ ((♯‘𝑑) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ (𝑥 ∈ Word 𝑉 ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ (𝑥 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑥)} ∈ 𝐸))) → (𝑁 ∈ ℕ0 → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥)))
13222, 30, 131syl2anb 598 . . . . 5 ((𝑑𝐷𝑥𝐷) → (𝑁 ∈ ℕ0 → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥)))
133132impcom 407 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((lastS‘𝑑) = (lastS‘𝑥) → 𝑑 = 𝑥))
13414, 133sylbid 240 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑑𝐷𝑥𝐷)) → ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥))
135134ralrimivva 3202 . 2 (𝑁 ∈ ℕ0 → ∀𝑑𝐷𝑥𝐷 ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥))
136 dff13 7275 . 2 (𝐹:𝐷1-1𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑑𝐷𝑥𝐷 ((𝐹𝑑) = (𝐹𝑥) → 𝑑 = 𝑥)))
1376, 135, 136sylanbrc 583 1 (𝑁 ∈ ℕ0𝐹:𝐷1-1𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  c0 4333  {cpr 4628   class class class wbr 5143  cmpt 5225  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  2c2 12321  0cn0 12526  chash 14369  Word cword 14552  lastSclsw 14600   prefix cpfx 14708  Vtxcvtx 29013  Edgcedg 29064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-lsw 14601  df-s1 14634  df-substr 14679  df-pfx 14709
This theorem is referenced by:  wwlksnextbij0  29921
  Copyright terms: Public domain W3C validator