MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextfun Structured version   Visualization version   GIF version

Theorem wwlksnextfun 28164
Description: Lemma for wwlksnextbij 28168. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextfun (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸   𝑤,𝐸   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉   𝑤,𝑉   𝑛,𝑊   𝑡,𝑛
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑁(𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextfun
StepHypRef Expression
1 fveqeq2 6765 . . . . . 6 (𝑤 = 𝑡 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑡) = (𝑁 + 2)))
2 oveq1 7262 . . . . . . 7 (𝑤 = 𝑡 → (𝑤 prefix (𝑁 + 1)) = (𝑡 prefix (𝑁 + 1)))
32eqeq1d 2740 . . . . . 6 (𝑤 = 𝑡 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑡 prefix (𝑁 + 1)) = 𝑊))
4 fveq2 6756 . . . . . . . 8 (𝑤 = 𝑡 → (lastS‘𝑤) = (lastS‘𝑡))
54preq2d 4673 . . . . . . 7 (𝑤 = 𝑡 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑡)})
65eleq1d 2823 . . . . . 6 (𝑤 = 𝑡 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
71, 3, 63anbi123d 1434 . . . . 5 (𝑤 = 𝑡 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)))
8 wwlksnextbij0.d . . . . 5 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
97, 8elrab2 3620 . . . 4 (𝑡𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)))
10 simpll 763 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 𝑡 ∈ Word 𝑉)
11 nn0re 12172 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 2re 11977 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
14 nn0ge0 12188 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
15 2pos 12006 . . . . . . . . . . . . . . . . 17 0 < 2
1615a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 < 2)
1711, 13, 14, 16addgegt0d 11478 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
1817ad2antlr 723 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 0 < (𝑁 + 2))
19 breq2 5074 . . . . . . . . . . . . . . 15 ((♯‘𝑡) = (𝑁 + 2) → (0 < (♯‘𝑡) ↔ 0 < (𝑁 + 2)))
2019adantl 481 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → (0 < (♯‘𝑡) ↔ 0 < (𝑁 + 2)))
2118, 20mpbird 256 . . . . . . . . . . . . 13 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 0 < (♯‘𝑡))
22 hashgt0n0 14008 . . . . . . . . . . . . 13 ((𝑡 ∈ Word 𝑉 ∧ 0 < (♯‘𝑡)) → 𝑡 ≠ ∅)
2310, 21, 22syl2anc 583 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 𝑡 ≠ ∅)
2410, 23jca 511 . . . . . . . . . . 11 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
2524expcom 413 . . . . . . . . . 10 ((♯‘𝑡) = (𝑁 + 2) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
26253ad2ant1 1131 . . . . . . . . 9 (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2726expd 415 . . . . . . . 8 (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) → (𝑡 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))))
2827impcom 407 . . . . . . 7 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2928impcom 407 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
30 lswcl 14199 . . . . . 6 ((𝑡 ∈ Word 𝑉𝑡 ≠ ∅) → (lastS‘𝑡) ∈ 𝑉)
3129, 30syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → (lastS‘𝑡) ∈ 𝑉)
32 simprr3 1221 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)
3331, 32jca 511 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
349, 33sylan2b 593 . . 3 ((𝑁 ∈ ℕ0𝑡𝐷) → ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
35 preq2 4667 . . . . 5 (𝑛 = (lastS‘𝑡) → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), (lastS‘𝑡)})
3635eleq1d 2823 . . . 4 (𝑛 = (lastS‘𝑡) → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
37 wwlksnextbij0.r . . . 4 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
3836, 37elrab2 3620 . . 3 ((lastS‘𝑡) ∈ 𝑅 ↔ ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
3934, 38sylibr 233 . 2 ((𝑁 ∈ ℕ0𝑡𝐷) → (lastS‘𝑡) ∈ 𝑅)
40 wwlksnextbij0.f . 2 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
4139, 40fmptd 6970 1 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {crab 3067  c0 4253  {cpr 4560   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  2c2 11958  0cn0 12163  chash 13972  Word cword 14145  lastSclsw 14193   prefix cpfx 14311  Vtxcvtx 27269  Edgcedg 27320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194
This theorem is referenced by:  wwlksnextinj  28165  wwlksnextsurj  28166
  Copyright terms: Public domain W3C validator