Step | Hyp | Ref
| Expression |
1 | | fveqeq2 6897 |
. . . . . 6
β’ (π€ = π‘ β ((β―βπ€) = (π + 2) β (β―βπ‘) = (π + 2))) |
2 | | oveq1 7412 |
. . . . . . 7
β’ (π€ = π‘ β (π€ prefix (π + 1)) = (π‘ prefix (π + 1))) |
3 | 2 | eqeq1d 2734 |
. . . . . 6
β’ (π€ = π‘ β ((π€ prefix (π + 1)) = π β (π‘ prefix (π + 1)) = π)) |
4 | | fveq2 6888 |
. . . . . . . 8
β’ (π€ = π‘ β (lastSβπ€) = (lastSβπ‘)) |
5 | 4 | preq2d 4743 |
. . . . . . 7
β’ (π€ = π‘ β {(lastSβπ), (lastSβπ€)} = {(lastSβπ), (lastSβπ‘)}) |
6 | 5 | eleq1d 2818 |
. . . . . 6
β’ (π€ = π‘ β ({(lastSβπ), (lastSβπ€)} β πΈ β {(lastSβπ), (lastSβπ‘)} β πΈ)) |
7 | 1, 3, 6 | 3anbi123d 1436 |
. . . . 5
β’ (π€ = π‘ β (((β―βπ€) = (π + 2) β§ (π€ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ€)} β πΈ) β ((β―βπ‘) = (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ))) |
8 | | wwlksnextbij0.d |
. . . . 5
β’ π· = {π€ β Word π β£ ((β―βπ€) = (π + 2) β§ (π€ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ€)} β πΈ)} |
9 | 7, 8 | elrab2 3685 |
. . . 4
β’ (π‘ β π· β (π‘ β Word π β§ ((β―βπ‘) = (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ))) |
10 | | simpll 765 |
. . . . . . . . . . . 12
β’ (((π‘ β Word π β§ π β β0) β§
(β―βπ‘) = (π + 2)) β π‘ β Word π) |
11 | | nn0re 12477 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β π β
β) |
12 | | 2re 12282 |
. . . . . . . . . . . . . . . . 17
β’ 2 β
β |
13 | 12 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β 2 β β) |
14 | | nn0ge0 12493 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β 0 β€ π) |
15 | | 2pos 12311 |
. . . . . . . . . . . . . . . . 17
β’ 0 <
2 |
16 | 15 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β 0 < 2) |
17 | 11, 13, 14, 16 | addgegt0d 11783 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β 0 < (π +
2)) |
18 | 17 | ad2antlr 725 |
. . . . . . . . . . . . . 14
β’ (((π‘ β Word π β§ π β β0) β§
(β―βπ‘) = (π + 2)) β 0 < (π + 2)) |
19 | | breq2 5151 |
. . . . . . . . . . . . . . 15
β’
((β―βπ‘) =
(π + 2) β (0 <
(β―βπ‘) β 0
< (π +
2))) |
20 | 19 | adantl 482 |
. . . . . . . . . . . . . 14
β’ (((π‘ β Word π β§ π β β0) β§
(β―βπ‘) = (π + 2)) β (0 <
(β―βπ‘) β 0
< (π +
2))) |
21 | 18, 20 | mpbird 256 |
. . . . . . . . . . . . 13
β’ (((π‘ β Word π β§ π β β0) β§
(β―βπ‘) = (π + 2)) β 0 <
(β―βπ‘)) |
22 | | hashgt0n0 14321 |
. . . . . . . . . . . . 13
β’ ((π‘ β Word π β§ 0 < (β―βπ‘)) β π‘ β β
) |
23 | 10, 21, 22 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π‘ β Word π β§ π β β0) β§
(β―βπ‘) = (π + 2)) β π‘ β β
) |
24 | 10, 23 | jca 512 |
. . . . . . . . . . 11
β’ (((π‘ β Word π β§ π β β0) β§
(β―βπ‘) = (π + 2)) β (π‘ β Word π β§ π‘ β β
)) |
25 | 24 | expcom 414 |
. . . . . . . . . 10
β’
((β―βπ‘) =
(π + 2) β ((π‘ β Word π β§ π β β0) β (π‘ β Word π β§ π‘ β β
))) |
26 | 25 | 3ad2ant1 1133 |
. . . . . . . . 9
β’
(((β―βπ‘)
= (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ) β ((π‘ β Word π β§ π β β0) β (π‘ β Word π β§ π‘ β β
))) |
27 | 26 | expd 416 |
. . . . . . . 8
β’
(((β―βπ‘)
= (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ) β (π‘ β Word π β (π β β0 β (π‘ β Word π β§ π‘ β β
)))) |
28 | 27 | impcom 408 |
. . . . . . 7
β’ ((π‘ β Word π β§ ((β―βπ‘) = (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ)) β (π β β0 β (π‘ β Word π β§ π‘ β β
))) |
29 | 28 | impcom 408 |
. . . . . 6
β’ ((π β β0
β§ (π‘ β Word π β§ ((β―βπ‘) = (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ))) β (π‘ β Word π β§ π‘ β β
)) |
30 | | lswcl 14514 |
. . . . . 6
β’ ((π‘ β Word π β§ π‘ β β
) β (lastSβπ‘) β π) |
31 | 29, 30 | syl 17 |
. . . . 5
β’ ((π β β0
β§ (π‘ β Word π β§ ((β―βπ‘) = (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ))) β (lastSβπ‘) β π) |
32 | | simprr3 1223 |
. . . . 5
β’ ((π β β0
β§ (π‘ β Word π β§ ((β―βπ‘) = (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ))) β {(lastSβπ), (lastSβπ‘)} β πΈ) |
33 | 31, 32 | jca 512 |
. . . 4
β’ ((π β β0
β§ (π‘ β Word π β§ ((β―βπ‘) = (π + 2) β§ (π‘ prefix (π + 1)) = π β§ {(lastSβπ), (lastSβπ‘)} β πΈ))) β ((lastSβπ‘) β π β§ {(lastSβπ), (lastSβπ‘)} β πΈ)) |
34 | 9, 33 | sylan2b 594 |
. . 3
β’ ((π β β0
β§ π‘ β π·) β ((lastSβπ‘) β π β§ {(lastSβπ), (lastSβπ‘)} β πΈ)) |
35 | | preq2 4737 |
. . . . 5
β’ (π = (lastSβπ‘) β {(lastSβπ), π} = {(lastSβπ), (lastSβπ‘)}) |
36 | 35 | eleq1d 2818 |
. . . 4
β’ (π = (lastSβπ‘) β ({(lastSβπ), π} β πΈ β {(lastSβπ), (lastSβπ‘)} β πΈ)) |
37 | | wwlksnextbij0.r |
. . . 4
β’ π
= {π β π β£ {(lastSβπ), π} β πΈ} |
38 | 36, 37 | elrab2 3685 |
. . 3
β’
((lastSβπ‘)
β π
β
((lastSβπ‘) β
π β§ {(lastSβπ), (lastSβπ‘)} β πΈ)) |
39 | 34, 38 | sylibr 233 |
. 2
β’ ((π β β0
β§ π‘ β π·) β (lastSβπ‘) β π
) |
40 | | wwlksnextbij0.f |
. 2
β’ πΉ = (π‘ β π· β¦ (lastSβπ‘)) |
41 | 39, 40 | fmptd 7110 |
1
β’ (π β β0
β πΉ:π·βΆπ
) |