MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextfun Structured version   Visualization version   GIF version

Theorem wwlksnextfun 29141
Description: Lemma for wwlksnextbij 29145. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtxβ€˜πΊ)
wwlksnextbij0.e 𝐸 = (Edgβ€˜πΊ)
wwlksnextbij0.d 𝐷 = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑑 ∈ 𝐷 ↦ (lastSβ€˜π‘‘))
Assertion
Ref Expression
wwlksnextfun (𝑁 ∈ β„•0 β†’ 𝐹:π·βŸΆπ‘…)
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,π‘Š   𝑑,𝐷   𝑛,𝐸   𝑀,𝐸   𝑑,𝑁,𝑀   𝑑,𝑅   𝑛,𝑉   𝑀,𝑉   𝑛,π‘Š   𝑑,𝑛
Allowed substitution hints:   𝐷(𝑀,𝑛)   𝑅(𝑀,𝑛)   𝐸(𝑑)   𝐹(𝑀,𝑑,𝑛)   𝐺(𝑑,𝑛)   𝑁(𝑛)   𝑉(𝑑)   π‘Š(𝑑)

Proof of Theorem wwlksnextfun
StepHypRef Expression
1 fveqeq2 6897 . . . . . 6 (𝑀 = 𝑑 β†’ ((β™―β€˜π‘€) = (𝑁 + 2) ↔ (β™―β€˜π‘‘) = (𝑁 + 2)))
2 oveq1 7412 . . . . . . 7 (𝑀 = 𝑑 β†’ (𝑀 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1)))
32eqeq1d 2734 . . . . . 6 (𝑀 = 𝑑 β†’ ((𝑀 prefix (𝑁 + 1)) = π‘Š ↔ (𝑑 prefix (𝑁 + 1)) = π‘Š))
4 fveq2 6888 . . . . . . . 8 (𝑀 = 𝑑 β†’ (lastSβ€˜π‘€) = (lastSβ€˜π‘‘))
54preq2d 4743 . . . . . . 7 (𝑀 = 𝑑 β†’ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} = {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)})
65eleq1d 2818 . . . . . 6 (𝑀 = 𝑑 β†’ ({(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸 ↔ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))
71, 3, 63anbi123d 1436 . . . . 5 (𝑀 = 𝑑 β†’ (((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) ↔ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)))
8 wwlksnextbij0.d . . . . 5 𝐷 = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
97, 8elrab2 3685 . . . 4 (𝑑 ∈ 𝐷 ↔ (𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)))
10 simpll 765 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ 𝑑 ∈ Word 𝑉)
11 nn0re 12477 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ ℝ)
12 2re 12282 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„•0 β†’ 2 ∈ ℝ)
14 nn0ge0 12493 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„•0 β†’ 0 ≀ 𝑁)
15 2pos 12311 . . . . . . . . . . . . . . . . 17 0 < 2
1615a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„•0 β†’ 0 < 2)
1711, 13, 14, 16addgegt0d 11783 . . . . . . . . . . . . . . 15 (𝑁 ∈ β„•0 β†’ 0 < (𝑁 + 2))
1817ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑑 ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ 0 < (𝑁 + 2))
19 breq2 5151 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ (0 < (β™―β€˜π‘‘) ↔ 0 < (𝑁 + 2)))
2019adantl 482 . . . . . . . . . . . . . 14 (((𝑑 ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ (0 < (β™―β€˜π‘‘) ↔ 0 < (𝑁 + 2)))
2118, 20mpbird 256 . . . . . . . . . . . . 13 (((𝑑 ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ 0 < (β™―β€˜π‘‘))
22 hashgt0n0 14321 . . . . . . . . . . . . 13 ((𝑑 ∈ Word 𝑉 ∧ 0 < (β™―β€˜π‘‘)) β†’ 𝑑 β‰  βˆ…)
2310, 21, 22syl2anc 584 . . . . . . . . . . . 12 (((𝑑 ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ 𝑑 β‰  βˆ…)
2410, 23jca 512 . . . . . . . . . . 11 (((𝑑 ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) ∧ (β™―β€˜π‘‘) = (𝑁 + 2)) β†’ (𝑑 ∈ Word 𝑉 ∧ 𝑑 β‰  βˆ…))
2524expcom 414 . . . . . . . . . 10 ((β™―β€˜π‘‘) = (𝑁 + 2) β†’ ((𝑑 ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑑 ∈ Word 𝑉 ∧ 𝑑 β‰  βˆ…)))
26253ad2ant1 1133 . . . . . . . . 9 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸) β†’ ((𝑑 ∈ Word 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑑 ∈ Word 𝑉 ∧ 𝑑 β‰  βˆ…)))
2726expd 416 . . . . . . . 8 (((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸) β†’ (𝑑 ∈ Word 𝑉 β†’ (𝑁 ∈ β„•0 β†’ (𝑑 ∈ Word 𝑉 ∧ 𝑑 β‰  βˆ…))))
2827impcom 408 . . . . . . 7 ((𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)) β†’ (𝑁 ∈ β„•0 β†’ (𝑑 ∈ Word 𝑉 ∧ 𝑑 β‰  βˆ…)))
2928impcom 408 . . . . . 6 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))) β†’ (𝑑 ∈ Word 𝑉 ∧ 𝑑 β‰  βˆ…))
30 lswcl 14514 . . . . . 6 ((𝑑 ∈ Word 𝑉 ∧ 𝑑 β‰  βˆ…) β†’ (lastSβ€˜π‘‘) ∈ 𝑉)
3129, 30syl 17 . . . . 5 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))) β†’ (lastSβ€˜π‘‘) ∈ 𝑉)
32 simprr3 1223 . . . . 5 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))) β†’ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸)
3331, 32jca 512 . . . 4 ((𝑁 ∈ β„•0 ∧ (𝑑 ∈ Word 𝑉 ∧ ((β™―β€˜π‘‘) = (𝑁 + 2) ∧ (𝑑 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))) β†’ ((lastSβ€˜π‘‘) ∈ 𝑉 ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))
349, 33sylan2b 594 . . 3 ((𝑁 ∈ β„•0 ∧ 𝑑 ∈ 𝐷) β†’ ((lastSβ€˜π‘‘) ∈ 𝑉 ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))
35 preq2 4737 . . . . 5 (𝑛 = (lastSβ€˜π‘‘) β†’ {(lastSβ€˜π‘Š), 𝑛} = {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)})
3635eleq1d 2818 . . . 4 (𝑛 = (lastSβ€˜π‘‘) β†’ ({(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸 ↔ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))
37 wwlksnextbij0.r . . . 4 𝑅 = {𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘Š), 𝑛} ∈ 𝐸}
3836, 37elrab2 3685 . . 3 ((lastSβ€˜π‘‘) ∈ 𝑅 ↔ ((lastSβ€˜π‘‘) ∈ 𝑉 ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘‘)} ∈ 𝐸))
3934, 38sylibr 233 . 2 ((𝑁 ∈ β„•0 ∧ 𝑑 ∈ 𝐷) β†’ (lastSβ€˜π‘‘) ∈ 𝑅)
40 wwlksnextbij0.f . 2 𝐹 = (𝑑 ∈ 𝐷 ↦ (lastSβ€˜π‘‘))
4139, 40fmptd 7110 1 (𝑁 ∈ β„•0 β†’ 𝐹:π·βŸΆπ‘…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432  βˆ…c0 4321  {cpr 4629   class class class wbr 5147   ↦ cmpt 5230  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  2c2 12263  β„•0cn0 12468  β™―chash 14286  Word cword 14460  lastSclsw 14508   prefix cpfx 14616  Vtxcvtx 28245  Edgcedg 28296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509
This theorem is referenced by:  wwlksnextinj  29142  wwlksnextsurj  29143
  Copyright terms: Public domain W3C validator