MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextfun Structured version   Visualization version   GIF version

Theorem wwlksnextfun 29727
Description: Lemma for wwlksnextbij 29731. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextfun (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸   𝑤,𝐸   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉   𝑤,𝑉   𝑛,𝑊   𝑡,𝑛
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑁(𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextfun
StepHypRef Expression
1 fveqeq2 6909 . . . . . 6 (𝑤 = 𝑡 → ((♯‘𝑤) = (𝑁 + 2) ↔ (♯‘𝑡) = (𝑁 + 2)))
2 oveq1 7431 . . . . . . 7 (𝑤 = 𝑡 → (𝑤 prefix (𝑁 + 1)) = (𝑡 prefix (𝑁 + 1)))
32eqeq1d 2729 . . . . . 6 (𝑤 = 𝑡 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑡 prefix (𝑁 + 1)) = 𝑊))
4 fveq2 6900 . . . . . . . 8 (𝑤 = 𝑡 → (lastS‘𝑤) = (lastS‘𝑡))
54preq2d 4747 . . . . . . 7 (𝑤 = 𝑡 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑡)})
65eleq1d 2813 . . . . . 6 (𝑤 = 𝑡 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
71, 3, 63anbi123d 1432 . . . . 5 (𝑤 = 𝑡 → (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)))
8 wwlksnextbij0.d . . . . 5 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
97, 8elrab2 3685 . . . 4 (𝑡𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)))
10 simpll 765 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 𝑡 ∈ Word 𝑉)
11 nn0re 12517 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 2re 12322 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
14 nn0ge0 12533 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
15 2pos 12351 . . . . . . . . . . . . . . . . 17 0 < 2
1615a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 < 2)
1711, 13, 14, 16addgegt0d 11823 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
1817ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 0 < (𝑁 + 2))
19 breq2 5154 . . . . . . . . . . . . . . 15 ((♯‘𝑡) = (𝑁 + 2) → (0 < (♯‘𝑡) ↔ 0 < (𝑁 + 2)))
2019adantl 480 . . . . . . . . . . . . . 14 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → (0 < (♯‘𝑡) ↔ 0 < (𝑁 + 2)))
2118, 20mpbird 256 . . . . . . . . . . . . 13 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 0 < (♯‘𝑡))
22 hashgt0n0 14362 . . . . . . . . . . . . 13 ((𝑡 ∈ Word 𝑉 ∧ 0 < (♯‘𝑡)) → 𝑡 ≠ ∅)
2310, 21, 22syl2anc 582 . . . . . . . . . . . 12 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → 𝑡 ≠ ∅)
2410, 23jca 510 . . . . . . . . . . 11 (((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) ∧ (♯‘𝑡) = (𝑁 + 2)) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
2524expcom 412 . . . . . . . . . 10 ((♯‘𝑡) = (𝑁 + 2) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
26253ad2ant1 1130 . . . . . . . . 9 (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) → ((𝑡 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2726expd 414 . . . . . . . 8 (((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸) → (𝑡 ∈ Word 𝑉 → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))))
2827impcom 406 . . . . . . 7 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)) → (𝑁 ∈ ℕ0 → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅)))
2928impcom 406 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → (𝑡 ∈ Word 𝑉𝑡 ≠ ∅))
30 lswcl 14556 . . . . . 6 ((𝑡 ∈ Word 𝑉𝑡 ≠ ∅) → (lastS‘𝑡) ∈ 𝑉)
3129, 30syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → (lastS‘𝑡) ∈ 𝑉)
32 simprr3 1220 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸)
3331, 32jca 510 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = (𝑁 + 2) ∧ (𝑡 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))) → ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
349, 33sylan2b 592 . . 3 ((𝑁 ∈ ℕ0𝑡𝐷) → ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
35 preq2 4741 . . . . 5 (𝑛 = (lastS‘𝑡) → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), (lastS‘𝑡)})
3635eleq1d 2813 . . . 4 (𝑛 = (lastS‘𝑡) → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
37 wwlksnextbij0.r . . . 4 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
3836, 37elrab2 3685 . . 3 ((lastS‘𝑡) ∈ 𝑅 ↔ ((lastS‘𝑡) ∈ 𝑉 ∧ {(lastS‘𝑊), (lastS‘𝑡)} ∈ 𝐸))
3934, 38sylibr 233 . 2 ((𝑁 ∈ ℕ0𝑡𝐷) → (lastS‘𝑡) ∈ 𝑅)
40 wwlksnextbij0.f . 2 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
4139, 40fmptd 7127 1 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2936  {crab 3428  c0 4324  {cpr 4632   class class class wbr 5150  cmpt 5233  wf 6547  cfv 6551  (class class class)co 7424  cr 11143  0cc0 11144  1c1 11145   + caddc 11147   < clt 11284  2c2 12303  0cn0 12508  chash 14327  Word cword 14502  lastSclsw 14550   prefix cpfx 14658  Vtxcvtx 28827  Edgcedg 28878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-n0 12509  df-xnn0 12581  df-z 12595  df-uz 12859  df-fz 13523  df-fzo 13666  df-hash 14328  df-word 14503  df-lsw 14551
This theorem is referenced by:  wwlksnextinj  29728  wwlksnextsurj  29729
  Copyright terms: Public domain W3C validator