Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumprval | Structured version Visualization version GIF version |
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.) |
Ref | Expression |
---|---|
gsumprval.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumprval.p | ⊢ + = (+g‘𝐺) |
gsumprval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsumprval.n | ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) |
gsumprval.f | ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) |
Ref | Expression |
---|---|
gsumprval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumprval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumprval.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumprval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
4 | gsumprval.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | uzid 12607 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
7 | peano2uz 12651 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
9 | gsumprval.f | . . . 4 ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) | |
10 | fzpr 13321 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | |
11 | 4, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
12 | gsumprval.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) | |
13 | 12 | eqcomd 2744 | . . . . . . 7 ⊢ (𝜑 → (𝑀 + 1) = 𝑁) |
14 | 13 | preq2d 4676 | . . . . . 6 ⊢ (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁}) |
15 | 11, 14 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁}) |
16 | 15 | feq2d 6578 | . . . 4 ⊢ (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵 ↔ 𝐹:{𝑀, 𝑁}⟶𝐵)) |
17 | 9, 16 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐹:(𝑀...(𝑀 + 1))⟶𝐵) |
18 | 1, 2, 3, 8, 17 | gsumval2 18380 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1))) |
19 | seqp1 13746 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1)))) | |
20 | 6, 19 | syl 17 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
21 | seq1 13744 | . . . 4 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | |
22 | 4, 21 | syl 17 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
23 | 13 | fveq2d 6770 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹‘𝑁)) |
24 | 22, 23 | oveq12d 7285 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
25 | 18, 20, 24 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cpr 4563 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 1c1 10882 + caddc 10884 ℤcz 12329 ℤ≥cuz 12592 ...cfz 13249 seqcseq 13731 Basecbs 16922 +gcplusg 16972 Σg cgsu 17161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-n0 12244 df-z 12330 df-uz 12593 df-fz 13250 df-seq 13732 df-0g 17162 df-gsum 17163 |
This theorem is referenced by: gsumpr12val 18383 |
Copyright terms: Public domain | W3C validator |