MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumprval Structured version   Visualization version   GIF version

Theorem gsumprval 18615
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsumprval.b 𝐵 = (Base‘𝐺)
gsumprval.p + = (+g𝐺)
gsumprval.g (𝜑𝐺𝑉)
gsumprval.m (𝜑𝑀 ∈ ℤ)
gsumprval.n (𝜑𝑁 = (𝑀 + 1))
gsumprval.f (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
Assertion
Ref Expression
gsumprval (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))

Proof of Theorem gsumprval
StepHypRef Expression
1 gsumprval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumprval.p . . 3 + = (+g𝐺)
3 gsumprval.g . . 3 (𝜑𝐺𝑉)
4 gsumprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 uzid 12808 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
7 peano2uz 12860 . . . 4 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
86, 7syl 17 . . 3 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
9 gsumprval.f . . . 4 (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
10 fzpr 13540 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
114, 10syl 17 . . . . . 6 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
12 gsumprval.n . . . . . . . 8 (𝜑𝑁 = (𝑀 + 1))
1312eqcomd 2735 . . . . . . 7 (𝜑 → (𝑀 + 1) = 𝑁)
1413preq2d 4704 . . . . . 6 (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁})
1511, 14eqtrd 2764 . . . . 5 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁})
1615feq2d 6672 . . . 4 (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵𝐹:{𝑀, 𝑁}⟶𝐵))
179, 16mpbird 257 . . 3 (𝜑𝐹:(𝑀...(𝑀 + 1))⟶𝐵)
181, 2, 3, 8, 17gsumval2 18613 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1)))
19 seqp1 13981 . . 3 (𝑀 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
206, 19syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
21 seq1 13979 . . . 4 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
224, 21syl 17 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
2313fveq2d 6862 . . 3 (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹𝑁))
2422, 23oveq12d 7405 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹𝑀) + (𝐹𝑁)))
2518, 20, 243eqtrd 2768 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cpr 4591  wf 6507  cfv 6511  (class class class)co 7387  1c1 11069   + caddc 11071  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  Basecbs 17179  +gcplusg 17220   Σg cgsu 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-0g 17404  df-gsum 17405
This theorem is referenced by:  gsumpr12val  18616
  Copyright terms: Public domain W3C validator