MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumprval Structured version   Visualization version   GIF version

Theorem gsumprval 18681
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsumprval.b 𝐵 = (Base‘𝐺)
gsumprval.p + = (+g𝐺)
gsumprval.g (𝜑𝐺𝑉)
gsumprval.m (𝜑𝑀 ∈ ℤ)
gsumprval.n (𝜑𝑁 = (𝑀 + 1))
gsumprval.f (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
Assertion
Ref Expression
gsumprval (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))

Proof of Theorem gsumprval
StepHypRef Expression
1 gsumprval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumprval.p . . 3 + = (+g𝐺)
3 gsumprval.g . . 3 (𝜑𝐺𝑉)
4 gsumprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 uzid 12889 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
7 peano2uz 12937 . . . 4 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
86, 7syl 17 . . 3 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
9 gsumprval.f . . . 4 (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
10 fzpr 13610 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
114, 10syl 17 . . . . . 6 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
12 gsumprval.n . . . . . . . 8 (𝜑𝑁 = (𝑀 + 1))
1312eqcomd 2732 . . . . . . 7 (𝜑 → (𝑀 + 1) = 𝑁)
1413preq2d 4749 . . . . . 6 (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁})
1511, 14eqtrd 2766 . . . . 5 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁})
1615feq2d 6714 . . . 4 (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵𝐹:{𝑀, 𝑁}⟶𝐵))
179, 16mpbird 256 . . 3 (𝜑𝐹:(𝑀...(𝑀 + 1))⟶𝐵)
181, 2, 3, 8, 17gsumval2 18679 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1)))
19 seqp1 14036 . . 3 (𝑀 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
206, 19syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
21 seq1 14034 . . . 4 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
224, 21syl 17 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
2313fveq2d 6905 . . 3 (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹𝑁))
2422, 23oveq12d 7442 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹𝑀) + (𝐹𝑁)))
2518, 20, 243eqtrd 2770 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {cpr 4635  wf 6550  cfv 6554  (class class class)co 7424  1c1 11159   + caddc 11161  cz 12610  cuz 12874  ...cfz 13538  seqcseq 14021  Basecbs 17213  +gcplusg 17266   Σg cgsu 17455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-seq 14022  df-0g 17456  df-gsum 17457
This theorem is referenced by:  gsumpr12val  18682
  Copyright terms: Public domain W3C validator