![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzosplitprm1 | Structured version Visualization version GIF version |
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 25-Jun-2022.) |
Ref | Expression |
---|---|
fzosplitprm1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ) | |
2 | peano2zm 12686 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ) |
4 | zltlem1 12696 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ 𝐴 ≤ (𝐵 − 1))) | |
5 | 4 | biimp3a 1469 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ≤ (𝐵 − 1)) |
6 | eluz2 12909 | . . . 4 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 − 1))) | |
7 | 1, 3, 5, 6 | syl3anbrc 1343 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) |
8 | fzosplitpr 13826 | . . 3 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) |
10 | zcn 12644 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
11 | 1cnd 11285 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 1 ∈ ℂ) | |
12 | 2cnd 12371 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 2 ∈ ℂ) | |
13 | 10, 11, 12 | subadd23d 11669 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → ((𝐵 − 1) + 2) = (𝐵 + (2 − 1))) |
14 | 2m1e1 12419 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
15 | 14 | oveq2i 7459 | . . . . . 6 ⊢ (𝐵 + (2 − 1)) = (𝐵 + 1) |
16 | 13, 15 | eqtr2di 2797 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) = ((𝐵 − 1) + 2)) |
17 | 16 | oveq2d 7464 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐴..^(𝐵 + 1)) = (𝐴..^((𝐵 − 1) + 2))) |
18 | npcan1 11715 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ((𝐵 − 1) + 1) = 𝐵) | |
19 | 10, 18 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → ((𝐵 − 1) + 1) = 𝐵) |
20 | 19 | eqcomd 2746 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 = ((𝐵 − 1) + 1)) |
21 | 20 | preq2d 4765 | . . . . 5 ⊢ (𝐵 ∈ ℤ → {(𝐵 − 1), 𝐵} = {(𝐵 − 1), ((𝐵 − 1) + 1)}) |
22 | 21 | uneq2d 4191 | . . . 4 ⊢ (𝐵 ∈ ℤ → ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) |
23 | 17, 22 | eqeq12d 2756 | . . 3 ⊢ (𝐵 ∈ ℤ → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))) |
24 | 23 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))) |
25 | 9, 24 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {cpr 4650 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 − cmin 11520 2c2 12348 ℤcz 12639 ℤ≥cuz 12903 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |