MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitprm1 Structured version   Visualization version   GIF version

Theorem fzosplitprm1 13738
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 25-Jun-2022.)
Assertion
Ref Expression
fzosplitprm1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))

Proof of Theorem fzosplitprm1
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ)
2 peano2zm 12576 . . . . 5 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
323ad2ant2 1134 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
4 zltlem1 12586 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 ≤ (𝐵 − 1)))
54biimp3a 1471 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ≤ (𝐵 − 1))
6 eluz2 12799 . . . 4 ((𝐵 − 1) ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 − 1)))
71, 3, 5, 6syl3anbrc 1344 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ (ℤ𝐴))
8 fzosplitpr 13737 . . 3 ((𝐵 − 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))
97, 8syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))
10 zcn 12534 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
11 1cnd 11169 . . . . . . 7 (𝐵 ∈ ℤ → 1 ∈ ℂ)
12 2cnd 12264 . . . . . . 7 (𝐵 ∈ ℤ → 2 ∈ ℂ)
1310, 11, 12subadd23d 11555 . . . . . 6 (𝐵 ∈ ℤ → ((𝐵 − 1) + 2) = (𝐵 + (2 − 1)))
14 2m1e1 12307 . . . . . . 7 (2 − 1) = 1
1514oveq2i 7398 . . . . . 6 (𝐵 + (2 − 1)) = (𝐵 + 1)
1613, 15eqtr2di 2781 . . . . 5 (𝐵 ∈ ℤ → (𝐵 + 1) = ((𝐵 − 1) + 2))
1716oveq2d 7403 . . . 4 (𝐵 ∈ ℤ → (𝐴..^(𝐵 + 1)) = (𝐴..^((𝐵 − 1) + 2)))
18 npcan1 11603 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵 − 1) + 1) = 𝐵)
1910, 18syl 17 . . . . . . 7 (𝐵 ∈ ℤ → ((𝐵 − 1) + 1) = 𝐵)
2019eqcomd 2735 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 = ((𝐵 − 1) + 1))
2120preq2d 4704 . . . . 5 (𝐵 ∈ ℤ → {(𝐵 − 1), 𝐵} = {(𝐵 − 1), ((𝐵 − 1) + 1)})
2221uneq2d 4131 . . . 4 (𝐵 ∈ ℤ → ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))
2317, 22eqeq12d 2745 . . 3 (𝐵 ∈ ℤ → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})))
24233ad2ant2 1134 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})))
259, 24mpbird 257 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cun 3912  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  2c2 12241  cz 12529  cuz 12793  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator