Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzosplitprm1 | Structured version Visualization version GIF version |
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 25-Jun-2022.) |
Ref | Expression |
---|---|
fzosplitprm1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ) | |
2 | peano2zm 12220 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1136 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ) |
4 | zltlem1 12230 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ 𝐴 ≤ (𝐵 − 1))) | |
5 | 4 | biimp3a 1471 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ≤ (𝐵 − 1)) |
6 | eluz2 12444 | . . . 4 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 − 1))) | |
7 | 1, 3, 5, 6 | syl3anbrc 1345 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) |
8 | fzosplitpr 13351 | . . 3 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) |
10 | zcn 12181 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
11 | 1cnd 10828 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 1 ∈ ℂ) | |
12 | 2cnd 11908 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 2 ∈ ℂ) | |
13 | 10, 11, 12 | subadd23d 11211 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → ((𝐵 − 1) + 2) = (𝐵 + (2 − 1))) |
14 | 2m1e1 11956 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
15 | 14 | oveq2i 7224 | . . . . . 6 ⊢ (𝐵 + (2 − 1)) = (𝐵 + 1) |
16 | 13, 15 | eqtr2di 2795 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) = ((𝐵 − 1) + 2)) |
17 | 16 | oveq2d 7229 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐴..^(𝐵 + 1)) = (𝐴..^((𝐵 − 1) + 2))) |
18 | npcan1 11257 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ((𝐵 − 1) + 1) = 𝐵) | |
19 | 10, 18 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → ((𝐵 − 1) + 1) = 𝐵) |
20 | 19 | eqcomd 2743 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 = ((𝐵 − 1) + 1)) |
21 | 20 | preq2d 4656 | . . . . 5 ⊢ (𝐵 ∈ ℤ → {(𝐵 − 1), 𝐵} = {(𝐵 − 1), ((𝐵 − 1) + 1)}) |
22 | 21 | uneq2d 4077 | . . . 4 ⊢ (𝐵 ∈ ℤ → ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})) |
23 | 17, 22 | eqeq12d 2753 | . . 3 ⊢ (𝐵 ∈ ℤ → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))) |
24 | 23 | 3ad2ant2 1136 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))) |
25 | 9, 24 | mpbird 260 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∪ cun 3864 {cpr 4543 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 1c1 10730 + caddc 10732 < clt 10867 ≤ cle 10868 − cmin 11062 2c2 11885 ℤcz 12176 ℤ≥cuz 12438 ..^cfzo 13238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |