MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitprm1 Structured version   Visualization version   GIF version

Theorem fzosplitprm1 13738
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 25-Jun-2022.)
Assertion
Ref Expression
fzosplitprm1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))

Proof of Theorem fzosplitprm1
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ)
2 peano2zm 12601 . . . . 5 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
323ad2ant2 1134 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
4 zltlem1 12611 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 ≤ (𝐵 − 1)))
54biimp3a 1469 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ≤ (𝐵 − 1))
6 eluz2 12824 . . . 4 ((𝐵 − 1) ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 − 1)))
71, 3, 5, 6syl3anbrc 1343 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ (ℤ𝐴))
8 fzosplitpr 13737 . . 3 ((𝐵 − 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))
97, 8syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))
10 zcn 12559 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
11 1cnd 11205 . . . . . . 7 (𝐵 ∈ ℤ → 1 ∈ ℂ)
12 2cnd 12286 . . . . . . 7 (𝐵 ∈ ℤ → 2 ∈ ℂ)
1310, 11, 12subadd23d 11589 . . . . . 6 (𝐵 ∈ ℤ → ((𝐵 − 1) + 2) = (𝐵 + (2 − 1)))
14 2m1e1 12334 . . . . . . 7 (2 − 1) = 1
1514oveq2i 7416 . . . . . 6 (𝐵 + (2 − 1)) = (𝐵 + 1)
1613, 15eqtr2di 2789 . . . . 5 (𝐵 ∈ ℤ → (𝐵 + 1) = ((𝐵 − 1) + 2))
1716oveq2d 7421 . . . 4 (𝐵 ∈ ℤ → (𝐴..^(𝐵 + 1)) = (𝐴..^((𝐵 − 1) + 2)))
18 npcan1 11635 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵 − 1) + 1) = 𝐵)
1910, 18syl 17 . . . . . . 7 (𝐵 ∈ ℤ → ((𝐵 − 1) + 1) = 𝐵)
2019eqcomd 2738 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 = ((𝐵 − 1) + 1))
2120preq2d 4743 . . . . 5 (𝐵 ∈ ℤ → {(𝐵 − 1), 𝐵} = {(𝐵 − 1), ((𝐵 − 1) + 1)})
2221uneq2d 4162 . . . 4 (𝐵 ∈ ℤ → ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)}))
2317, 22eqeq12d 2748 . . 3 (𝐵 ∈ ℤ → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})))
24233ad2ant2 1134 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}) ↔ (𝐴..^((𝐵 − 1) + 2)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), ((𝐵 − 1) + 1)})))
259, 24mpbird 256 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  cun 3945  {cpr 4629   class class class wbr 5147  cfv 6540  (class class class)co 7405  cc 11104  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cmin 11440  2c2 12263  cz 12554  cuz 12818  ..^cfzo 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator