Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprvalpw Structured version   Visualization version   GIF version

Theorem prprvalpw 44025
Description: The set of all proper unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprvalpw (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem prprvalpw
StepHypRef Expression
1 prprval 44024 . 2 (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
2 prssi 4717 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → {𝑎, 𝑏} ⊆ 𝑉)
3 eleq1 2880 . . . . . . . . . 10 (𝑝 = {𝑎, 𝑏} → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
43adantl 485 . . . . . . . . 9 ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
5 prex 5301 . . . . . . . . . 10 {𝑎, 𝑏} ∈ V
65elpw 4504 . . . . . . . . 9 ({𝑎, 𝑏} ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉)
74, 6syl6bb 290 . . . . . . . 8 ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉))
82, 7syl5ibrcom 250 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → 𝑝 ∈ 𝒫 𝑉))
98rexlimivv 3254 . . . . . 6 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) → 𝑝 ∈ 𝒫 𝑉)
109pm4.71ri 564 . . . . 5 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
1110a1i 11 . . . 4 (𝑉𝑊 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}))))
1211abbidv 2865 . . 3 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}))})
13 df-rab 3118 . . 3 {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}))}
1412, 13eqtr4di 2854 . 2 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
151, 14eqtrd 2836 1 (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  {cab 2779  wne 2990  wrex 3110  {crab 3113  wss 3884  𝒫 cpw 4500  {cpr 4530  cfv 6328  Pairspropercprpr 44022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-prpr 44023
This theorem is referenced by:  prprelb  44026  prprelprb  44027
  Copyright terms: Public domain W3C validator