Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prprvalpw | Structured version Visualization version GIF version |
Description: The set of all proper unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023.) |
Ref | Expression |
---|---|
prprvalpw | ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprval 44918 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | |
2 | prssi 4759 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → {𝑎, 𝑏} ⊆ 𝑉) | |
3 | eleq1 2827 | . . . . . . . . . 10 ⊢ (𝑝 = {𝑎, 𝑏} → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
4 | 3 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) |
5 | prex 5358 | . . . . . . . . . 10 ⊢ {𝑎, 𝑏} ∈ V | |
6 | 5 | elpw 4542 | . . . . . . . . 9 ⊢ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉) |
7 | 4, 6 | bitrdi 286 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉)) |
8 | 2, 7 | syl5ibrcom 246 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 ∈ 𝒫 𝑉)) |
9 | 8 | rexlimivv 3222 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 ∈ 𝒫 𝑉) |
10 | 9 | pm4.71ri 560 | . . . . 5 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})))) |
12 | 11 | abbidv 2808 | . . 3 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))}) |
13 | df-rab 3074 | . . 3 ⊢ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))} | |
14 | 12, 13 | eqtr4di 2797 | . 2 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
15 | 1, 14 | eqtrd 2779 | 1 ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 ≠ wne 2944 ∃wrex 3066 {crab 3069 ⊆ wss 3891 𝒫 cpw 4538 {cpr 4568 ‘cfv 6430 Pairspropercprpr 44916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-prpr 44917 |
This theorem is referenced by: prprelb 44920 prprelprb 44921 |
Copyright terms: Public domain | W3C validator |