Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prprvalpw | Structured version Visualization version GIF version |
Description: The set of all proper unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023.) |
Ref | Expression |
---|---|
prprvalpw | ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprval 45024 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | |
2 | prssi 4760 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → {𝑎, 𝑏} ⊆ 𝑉) | |
3 | eleq1 2824 | . . . . . . . . . 10 ⊢ (𝑝 = {𝑎, 𝑏} → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
4 | 3 | adantl 483 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) |
5 | prex 5364 | . . . . . . . . . 10 ⊢ {𝑎, 𝑏} ∈ V | |
6 | 5 | elpw 4543 | . . . . . . . . 9 ⊢ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉) |
7 | 4, 6 | bitrdi 287 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉)) |
8 | 2, 7 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 ∈ 𝒫 𝑉)) |
9 | 8 | rexlimivv 3193 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 ∈ 𝒫 𝑉) |
10 | 9 | pm4.71ri 562 | . . . . 5 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})))) |
12 | 11 | abbidv 2805 | . . 3 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))}) |
13 | df-rab 3287 | . . 3 ⊢ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))} | |
14 | 12, 13 | eqtr4di 2794 | . 2 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
15 | 1, 14 | eqtrd 2776 | 1 ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {cab 2713 ≠ wne 2941 ∃wrex 3071 {crab 3284 ⊆ wss 3892 𝒫 cpw 4539 {cpr 4567 ‘cfv 6458 Pairspropercprpr 45022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-prpr 45023 |
This theorem is referenced by: prprelb 45026 prprelprb 45027 |
Copyright terms: Public domain | W3C validator |