Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprvalpw Structured version   Visualization version   GIF version

Theorem prprvalpw 47516
Description: The set of all proper unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprvalpw (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem prprvalpw
StepHypRef Expression
1 prprval 47515 . 2 (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
2 prssi 4785 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → {𝑎, 𝑏} ⊆ 𝑉)
3 eleq1 2816 . . . . . . . . . 10 (𝑝 = {𝑎, 𝑏} → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
43adantl 481 . . . . . . . . 9 ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
5 prex 5392 . . . . . . . . . 10 {𝑎, 𝑏} ∈ V
65elpw 4567 . . . . . . . . 9 ({𝑎, 𝑏} ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉)
74, 6bitrdi 287 . . . . . . . 8 ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉))
82, 7syl5ibrcom 247 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → 𝑝 ∈ 𝒫 𝑉))
98rexlimivv 3179 . . . . . 6 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) → 𝑝 ∈ 𝒫 𝑉)
109pm4.71ri 560 . . . . 5 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
1110a1i 11 . . . 4 (𝑉𝑊 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}))))
1211abbidv 2795 . . 3 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}))})
13 df-rab 3406 . . 3 {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}))}
1412, 13eqtr4di 2782 . 2 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
151, 14eqtrd 2764 1 (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wrex 3053  {crab 3405  wss 3914  𝒫 cpw 4563  {cpr 4591  cfv 6511  Pairspropercprpr 47513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-prpr 47514
This theorem is referenced by:  prprelb  47517  prprelprb  47518
  Copyright terms: Public domain W3C validator