Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0 Structured version   Visualization version   GIF version

Theorem lsatcv0 37045
Description: An atom covers the zero subspace. (atcv0 30704 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0.o 0 = (0g𝑊)
lsatcv0.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0.c 𝐶 = ( ⋖L𝑊)
lsatcv0.w (𝜑𝑊 ∈ LVec)
lsatcv0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcv0 (𝜑 → { 0 }𝐶𝑄)

Proof of Theorem lsatcv0
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsatcv0.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 20368 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 eqid 2738 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lsatcv0.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
6 lsatcv0.q . . . . 5 (𝜑𝑄𝐴)
74, 5, 3, 6lsatlssel 37011 . . . 4 (𝜑𝑄 ∈ (LSubSp‘𝑊))
8 lsatcv0.o . . . . 5 0 = (0g𝑊)
98, 4lss0ss 20210 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊)) → { 0 } ⊆ 𝑄)
103, 7, 9syl2anc 584 . . 3 (𝜑 → { 0 } ⊆ 𝑄)
118, 5, 3, 6lsatn0 37013 . . . 4 (𝜑𝑄 ≠ { 0 })
1211necomd 2999 . . 3 (𝜑 → { 0 } ≠ 𝑄)
13 df-pss 3906 . . 3 ({ 0 } ⊊ 𝑄 ↔ ({ 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄))
1410, 12, 13sylanbrc 583 . 2 (𝜑 → { 0 } ⊊ 𝑄)
15 eqid 2738 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
16 eqid 2738 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
1715, 16, 8, 5islsat 37005 . . . . 5 (𝑊 ∈ LMod → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
183, 17syl 17 . . . 4 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
196, 18mpbid 231 . . 3 (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))
201adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LVec)
21 eldifi 4061 . . . . . . . 8 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
2221adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
2315, 8, 4, 16, 20, 22lspsncv0 20408 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2423ex 413 . . . . 5 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
25 psseq2 4023 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑄𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2625anbi2d 629 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2726rexbidv 3226 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2827notbid 318 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2928biimprcd 249 . . . . 5 (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3024, 29syl6 35 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3130rexlimdv 3212 . . 3 (𝜑 → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3219, 31mpd 15 . 2 (𝜑 → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))
33 lsatcv0.c . . 3 𝐶 = ( ⋖L𝑊)
348, 4lsssn0 20209 . . . 4 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
353, 34syl 17 . . 3 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
364, 33, 1, 35, 7lcvbr 37035 . 2 (𝜑 → ({ 0 }𝐶𝑄 ↔ ({ 0 } ⊊ 𝑄 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3714, 32, 36mpbir2and 710 1 (𝜑 → { 0 }𝐶𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  wss 3887  wpss 3888  {csn 4561   class class class wbr 5074  cfv 6433  Basecbs 16912  0gc0g 17150  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364  LSAtomsclsa 36988  L clcv 37032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lcv 37033
This theorem is referenced by:  lsatcveq0  37046  lsat0cv  37047  lsatcv0eq  37061  mapdcnvatN  39680  mapdat  39681
  Copyright terms: Public domain W3C validator