Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0 Structured version   Visualization version   GIF version

Theorem lsatcv0 34990
Description: An atom covers the zero subspace. (atcv0 29660 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0.o 0 = (0g𝑊)
lsatcv0.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0.c 𝐶 = ( ⋖L𝑊)
lsatcv0.w (𝜑𝑊 ∈ LVec)
lsatcv0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcv0 (𝜑 → { 0 }𝐶𝑄)

Proof of Theorem lsatcv0
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsatcv0.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19381 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 eqid 2765 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lsatcv0.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
6 lsatcv0.q . . . . 5 (𝜑𝑄𝐴)
74, 5, 3, 6lsatlssel 34956 . . . 4 (𝜑𝑄 ∈ (LSubSp‘𝑊))
8 lsatcv0.o . . . . 5 0 = (0g𝑊)
98, 4lss0ss 19221 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊)) → { 0 } ⊆ 𝑄)
103, 7, 9syl2anc 579 . . 3 (𝜑 → { 0 } ⊆ 𝑄)
118, 5, 3, 6lsatn0 34958 . . . 4 (𝜑𝑄 ≠ { 0 })
1211necomd 2992 . . 3 (𝜑 → { 0 } ≠ 𝑄)
13 df-pss 3750 . . 3 ({ 0 } ⊊ 𝑄 ↔ ({ 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄))
1410, 12, 13sylanbrc 578 . 2 (𝜑 → { 0 } ⊊ 𝑄)
15 eqid 2765 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
16 eqid 2765 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
1715, 16, 8, 5islsat 34950 . . . . 5 (𝑊 ∈ LMod → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
183, 17syl 17 . . . 4 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
196, 18mpbid 223 . . 3 (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))
201adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LVec)
21 eldifi 3896 . . . . . . . 8 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
2221adantl 473 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
2315, 8, 4, 16, 20, 22lspsncv0 19422 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2423ex 401 . . . . 5 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
25 psseq2 3858 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑄𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2625anbi2d 622 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2726rexbidv 3199 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2827notbid 309 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2928biimprcd 241 . . . . 5 (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3024, 29syl6 35 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3130rexlimdv 3177 . . 3 (𝜑 → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3219, 31mpd 15 . 2 (𝜑 → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))
33 lsatcv0.c . . 3 𝐶 = ( ⋖L𝑊)
348, 4lsssn0 19220 . . . 4 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
353, 34syl 17 . . 3 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
364, 33, 1, 35, 7lcvbr 34980 . 2 (𝜑 → ({ 0 }𝐶𝑄 ↔ ({ 0 } ⊊ 𝑄 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3714, 32, 36mpbir2and 704 1 (𝜑 → { 0 }𝐶𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wrex 3056  cdif 3731  wss 3734  wpss 3735  {csn 4336   class class class wbr 4811  cfv 6070  Basecbs 16133  0gc0g 16369  LModclmod 19135  LSubSpclss 19204  LSpanclspn 19246  LVecclvec 19377  LSAtomsclsa 34933  L clcv 34977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-tpos 7557  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-2 11337  df-3 11338  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-0g 16371  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-grp 17695  df-minusg 17696  df-sbg 17697  df-cmn 18464  df-abl 18465  df-mgp 18760  df-ur 18772  df-ring 18819  df-oppr 18893  df-dvdsr 18911  df-unit 18912  df-invr 18942  df-drng 19021  df-lmod 19137  df-lss 19205  df-lsp 19247  df-lvec 19378  df-lsatoms 34935  df-lcv 34978
This theorem is referenced by:  lsatcveq0  34991  lsat0cv  34992  lsatcv0eq  35006  mapdcnvatN  37625  mapdat  37626
  Copyright terms: Public domain W3C validator