Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0 Structured version   Visualization version   GIF version

Theorem lsatcv0 39151
Description: An atom covers the zero subspace. (atcv0 32324 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0.o 0 = (0g𝑊)
lsatcv0.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0.c 𝐶 = ( ⋖L𝑊)
lsatcv0.w (𝜑𝑊 ∈ LVec)
lsatcv0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcv0 (𝜑 → { 0 }𝐶𝑄)

Proof of Theorem lsatcv0
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsatcv0.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 21042 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 eqid 2733 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lsatcv0.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
6 lsatcv0.q . . . . 5 (𝜑𝑄𝐴)
74, 5, 3, 6lsatlssel 39117 . . . 4 (𝜑𝑄 ∈ (LSubSp‘𝑊))
8 lsatcv0.o . . . . 5 0 = (0g𝑊)
98, 4lss0ss 20884 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊)) → { 0 } ⊆ 𝑄)
103, 7, 9syl2anc 584 . . 3 (𝜑 → { 0 } ⊆ 𝑄)
118, 5, 3, 6lsatn0 39119 . . . 4 (𝜑𝑄 ≠ { 0 })
1211necomd 2984 . . 3 (𝜑 → { 0 } ≠ 𝑄)
13 df-pss 3918 . . 3 ({ 0 } ⊊ 𝑄 ↔ ({ 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄))
1410, 12, 13sylanbrc 583 . 2 (𝜑 → { 0 } ⊊ 𝑄)
15 eqid 2733 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
16 eqid 2733 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
1715, 16, 8, 5islsat 39111 . . . . 5 (𝑊 ∈ LMod → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
183, 17syl 17 . . . 4 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
196, 18mpbid 232 . . 3 (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))
201adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LVec)
21 eldifi 4080 . . . . . . . 8 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
2221adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
2315, 8, 4, 16, 20, 22lspsncv0 21085 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2423ex 412 . . . . 5 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
25 psseq2 4040 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑄𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2625anbi2d 630 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2726rexbidv 3157 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2827notbid 318 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2928biimprcd 250 . . . . 5 (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3024, 29syl6 35 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3130rexlimdv 3132 . . 3 (𝜑 → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3219, 31mpd 15 . 2 (𝜑 → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))
33 lsatcv0.c . . 3 𝐶 = ( ⋖L𝑊)
348, 4lsssn0 20883 . . . 4 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
353, 34syl 17 . . 3 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
364, 33, 1, 35, 7lcvbr 39141 . 2 (𝜑 → ({ 0 }𝐶𝑄 ↔ ({ 0 } ⊊ 𝑄 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3714, 32, 36mpbir2and 713 1 (𝜑 → { 0 }𝐶𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cdif 3895  wss 3898  wpss 3899  {csn 4575   class class class wbr 5093  cfv 6486  Basecbs 17122  0gc0g 17345  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  LVecclvec 21038  LSAtomsclsa 39094  L clcv 39138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039  df-lsatoms 39096  df-lcv 39139
This theorem is referenced by:  lsatcveq0  39152  lsat0cv  39153  lsatcv0eq  39167  mapdcnvatN  41786  mapdat  41787
  Copyright terms: Public domain W3C validator