![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv0 | Structured version Visualization version GIF version |
Description: An atom covers the zero subspace. (atcv0 32371 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lsatcv0.o | ⊢ 0 = (0g‘𝑊) |
lsatcv0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcv0.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lsatcv0.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcv0.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
Ref | Expression |
---|---|
lsatcv0 | ⊢ (𝜑 → { 0 }𝐶𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcv0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | lveclmod 21123 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | eqid 2735 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
5 | lsatcv0.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
6 | lsatcv0.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
7 | 4, 5, 3, 6 | lsatlssel 38979 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝑊)) |
8 | lsatcv0.o | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
9 | 8, 4 | lss0ss 20965 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊)) → { 0 } ⊆ 𝑄) |
10 | 3, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → { 0 } ⊆ 𝑄) |
11 | 8, 5, 3, 6 | lsatn0 38981 | . . . 4 ⊢ (𝜑 → 𝑄 ≠ { 0 }) |
12 | 11 | necomd 2994 | . . 3 ⊢ (𝜑 → { 0 } ≠ 𝑄) |
13 | df-pss 3983 | . . 3 ⊢ ({ 0 } ⊊ 𝑄 ↔ ({ 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄)) | |
14 | 10, 12, 13 | sylanbrc 583 | . 2 ⊢ (𝜑 → { 0 } ⊊ 𝑄) |
15 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
16 | eqid 2735 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
17 | 15, 16, 8, 5 | islsat 38973 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))) |
18 | 3, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))) |
19 | 6, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})) |
20 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LVec) |
21 | eldifi 4141 | . . . . . . . 8 ⊢ (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊)) | |
22 | 21 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊)) |
23 | 15, 8, 4, 16, 20, 22 | lspsncv0 21166 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))) |
24 | 23 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))) |
25 | psseq2 4101 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠 ⊊ 𝑄 ↔ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))) | |
26 | 25 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄) ↔ ({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))) |
27 | 26 | rexbidv 3177 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄) ↔ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))) |
28 | 27 | notbid 318 | . . . . . 6 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄) ↔ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))) |
29 | 28 | biimprcd 250 | . . . . 5 ⊢ (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄))) |
30 | 24, 29 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄)))) |
31 | 30 | rexlimdv 3151 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄))) |
32 | 19, 31 | mpd 15 | . 2 ⊢ (𝜑 → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄)) |
33 | lsatcv0.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
34 | 8, 4 | lsssn0 20964 | . . . 4 ⊢ (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊)) |
35 | 3, 34 | syl 17 | . . 3 ⊢ (𝜑 → { 0 } ∈ (LSubSp‘𝑊)) |
36 | 4, 33, 1, 35, 7 | lcvbr 39003 | . 2 ⊢ (𝜑 → ({ 0 }𝐶𝑄 ↔ ({ 0 } ⊊ 𝑄 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄)))) |
37 | 14, 32, 36 | mpbir2and 713 | 1 ⊢ (𝜑 → { 0 }𝐶𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 ∖ cdif 3960 ⊆ wss 3963 ⊊ wpss 3964 {csn 4631 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 0gc0g 17486 LModclmod 20875 LSubSpclss 20947 LSpanclspn 20987 LVecclvec 21119 LSAtomsclsa 38956 ⋖L clcv 39000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-lsatoms 38958 df-lcv 39001 |
This theorem is referenced by: lsatcveq0 39014 lsat0cv 39015 lsatcv0eq 39029 mapdcnvatN 41649 mapdat 41650 |
Copyright terms: Public domain | W3C validator |