Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0 Structured version   Visualization version   GIF version

Theorem lsatcv0 35106
Description: An atom covers the zero subspace. (atcv0 29756 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0.o 0 = (0g𝑊)
lsatcv0.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0.c 𝐶 = ( ⋖L𝑊)
lsatcv0.w (𝜑𝑊 ∈ LVec)
lsatcv0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcv0 (𝜑 → { 0 }𝐶𝑄)

Proof of Theorem lsatcv0
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsatcv0.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19465 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 eqid 2825 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lsatcv0.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
6 lsatcv0.q . . . . 5 (𝜑𝑄𝐴)
74, 5, 3, 6lsatlssel 35072 . . . 4 (𝜑𝑄 ∈ (LSubSp‘𝑊))
8 lsatcv0.o . . . . 5 0 = (0g𝑊)
98, 4lss0ss 19305 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊)) → { 0 } ⊆ 𝑄)
103, 7, 9syl2anc 581 . . 3 (𝜑 → { 0 } ⊆ 𝑄)
118, 5, 3, 6lsatn0 35074 . . . 4 (𝜑𝑄 ≠ { 0 })
1211necomd 3054 . . 3 (𝜑 → { 0 } ≠ 𝑄)
13 df-pss 3814 . . 3 ({ 0 } ⊊ 𝑄 ↔ ({ 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄))
1410, 12, 13sylanbrc 580 . 2 (𝜑 → { 0 } ⊊ 𝑄)
15 eqid 2825 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
16 eqid 2825 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
1715, 16, 8, 5islsat 35066 . . . . 5 (𝑊 ∈ LMod → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
183, 17syl 17 . . . 4 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
196, 18mpbid 224 . . 3 (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))
201adantr 474 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LVec)
21 eldifi 3959 . . . . . . . 8 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
2221adantl 475 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
2315, 8, 4, 16, 20, 22lspsncv0 19506 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2423ex 403 . . . . 5 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
25 psseq2 3921 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑄𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2625anbi2d 624 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2726rexbidv 3262 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2827notbid 310 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2928biimprcd 242 . . . . 5 (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3024, 29syl6 35 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3130rexlimdv 3239 . . 3 (𝜑 → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3219, 31mpd 15 . 2 (𝜑 → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))
33 lsatcv0.c . . 3 𝐶 = ( ⋖L𝑊)
348, 4lsssn0 19304 . . . 4 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
353, 34syl 17 . . 3 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
364, 33, 1, 35, 7lcvbr 35096 . 2 (𝜑 → ({ 0 }𝐶𝑄 ↔ ({ 0 } ⊊ 𝑄 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3714, 32, 36mpbir2and 706 1 (𝜑 → { 0 }𝐶𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 2999  wrex 3118  cdif 3795  wss 3798  wpss 3799  {csn 4397   class class class wbr 4873  cfv 6123  Basecbs 16222  0gc0g 16453  LModclmod 19219  LSubSpclss 19288  LSpanclspn 19330  LVecclvec 19461  LSAtomsclsa 35049  L clcv 35093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-sbg 17781  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-oppr 18977  df-dvdsr 18995  df-unit 18996  df-invr 19026  df-drng 19105  df-lmod 19221  df-lss 19289  df-lsp 19331  df-lvec 19462  df-lsatoms 35051  df-lcv 35094
This theorem is referenced by:  lsatcveq0  35107  lsat0cv  35108  lsatcv0eq  35122  mapdcnvatN  37741  mapdat  37742
  Copyright terms: Public domain W3C validator