| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv0 | Structured version Visualization version GIF version | ||
| Description: An atom covers the zero subspace. (atcv0 32308 analog.) (Contributed by NM, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcv0.o | ⊢ 0 = (0g‘𝑊) |
| lsatcv0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcv0.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lsatcv0.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcv0.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lsatcv0 | ⊢ (𝜑 → { 0 }𝐶𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcv0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21078 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | eqid 2734 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 5 | lsatcv0.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 6 | lsatcv0.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 7 | 4, 5, 3, 6 | lsatlssel 38939 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝑊)) |
| 8 | lsatcv0.o | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 9 | 8, 4 | lss0ss 20920 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊)) → { 0 } ⊆ 𝑄) |
| 10 | 3, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → { 0 } ⊆ 𝑄) |
| 11 | 8, 5, 3, 6 | lsatn0 38941 | . . . 4 ⊢ (𝜑 → 𝑄 ≠ { 0 }) |
| 12 | 11 | necomd 2986 | . . 3 ⊢ (𝜑 → { 0 } ≠ 𝑄) |
| 13 | df-pss 3953 | . . 3 ⊢ ({ 0 } ⊊ 𝑄 ↔ ({ 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄)) | |
| 14 | 10, 12, 13 | sylanbrc 583 | . 2 ⊢ (𝜑 → { 0 } ⊊ 𝑄) |
| 15 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 16 | eqid 2734 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 17 | 15, 16, 8, 5 | islsat 38933 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))) |
| 18 | 3, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))) |
| 19 | 6, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})) |
| 20 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LVec) |
| 21 | eldifi 4113 | . . . . . . . 8 ⊢ (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊)) | |
| 22 | 21 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊)) |
| 23 | 15, 8, 4, 16, 20, 22 | lspsncv0 21121 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))) |
| 24 | 23 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))) |
| 25 | psseq2 4073 | . . . . . . . . 9 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠 ⊊ 𝑄 ↔ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))) | |
| 26 | 25 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄) ↔ ({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))) |
| 27 | 26 | rexbidv 3166 | . . . . . . 7 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄) ↔ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))) |
| 28 | 27 | notbid 318 | . . . . . 6 ⊢ (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄) ↔ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))) |
| 29 | 28 | biimprcd 250 | . . . . 5 ⊢ (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄))) |
| 30 | 24, 29 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄)))) |
| 31 | 30 | rexlimdv 3140 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄))) |
| 32 | 19, 31 | mpd 15 | . 2 ⊢ (𝜑 → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄)) |
| 33 | lsatcv0.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 34 | 8, 4 | lsssn0 20919 | . . . 4 ⊢ (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊)) |
| 35 | 3, 34 | syl 17 | . . 3 ⊢ (𝜑 → { 0 } ∈ (LSubSp‘𝑊)) |
| 36 | 4, 33, 1, 35, 7 | lcvbr 38963 | . 2 ⊢ (𝜑 → ({ 0 }𝐶𝑄 ↔ ({ 0 } ⊊ 𝑄 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑄)))) |
| 37 | 14, 32, 36 | mpbir2and 713 | 1 ⊢ (𝜑 → { 0 }𝐶𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ∖ cdif 3930 ⊆ wss 3933 ⊊ wpss 3934 {csn 4608 class class class wbr 5125 ‘cfv 6542 Basecbs 17230 0gc0g 17460 LModclmod 20831 LSubSpclss 20902 LSpanclspn 20942 LVecclvec 21074 LSAtomsclsa 38916 ⋖L clcv 38960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-sbg 18930 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-drng 20704 df-lmod 20833 df-lss 20903 df-lsp 20943 df-lvec 21075 df-lsatoms 38918 df-lcv 38961 |
| This theorem is referenced by: lsatcveq0 38974 lsat0cv 38975 lsatcv0eq 38989 mapdcnvatN 41609 mapdat 41610 |
| Copyright terms: Public domain | W3C validator |