Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0 Structured version   Visualization version   GIF version

Theorem lsatcv0 36327
Description: An atom covers the zero subspace. (atcv0 30125 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0.o 0 = (0g𝑊)
lsatcv0.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0.c 𝐶 = ( ⋖L𝑊)
lsatcv0.w (𝜑𝑊 ∈ LVec)
lsatcv0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcv0 (𝜑 → { 0 }𝐶𝑄)

Proof of Theorem lsatcv0
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsatcv0.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19871 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 eqid 2798 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lsatcv0.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
6 lsatcv0.q . . . . 5 (𝜑𝑄𝐴)
74, 5, 3, 6lsatlssel 36293 . . . 4 (𝜑𝑄 ∈ (LSubSp‘𝑊))
8 lsatcv0.o . . . . 5 0 = (0g𝑊)
98, 4lss0ss 19713 . . . 4 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊)) → { 0 } ⊆ 𝑄)
103, 7, 9syl2anc 587 . . 3 (𝜑 → { 0 } ⊆ 𝑄)
118, 5, 3, 6lsatn0 36295 . . . 4 (𝜑𝑄 ≠ { 0 })
1211necomd 3042 . . 3 (𝜑 → { 0 } ≠ 𝑄)
13 df-pss 3900 . . 3 ({ 0 } ⊊ 𝑄 ↔ ({ 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄))
1410, 12, 13sylanbrc 586 . 2 (𝜑 → { 0 } ⊊ 𝑄)
15 eqid 2798 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
16 eqid 2798 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
1715, 16, 8, 5islsat 36287 . . . . 5 (𝑊 ∈ LMod → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
183, 17syl 17 . . . 4 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥})))
196, 18mpbid 235 . . 3 (𝜑 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}))
201adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LVec)
21 eldifi 4054 . . . . . . . 8 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
2221adantl 485 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
2315, 8, 4, 16, 20, 22lspsncv0 19911 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2423ex 416 . . . . 5 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
25 psseq2 4016 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑄𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})))
2625anbi2d 631 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2726rexbidv 3256 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2827notbid 321 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄) ↔ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥}))))
2928biimprcd 253 . . . . 5 (¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠 ⊊ ((LSpan‘𝑊)‘{𝑥})) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3024, 29syl6 35 . . . 4 (𝜑 → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3130rexlimdv 3242 . . 3 (𝜑 → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑥}) → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄)))
3219, 31mpd 15 . 2 (𝜑 → ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))
33 lsatcv0.c . . 3 𝐶 = ( ⋖L𝑊)
348, 4lsssn0 19712 . . . 4 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
353, 34syl 17 . . 3 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
364, 33, 1, 35, 7lcvbr 36317 . 2 (𝜑 → ({ 0 }𝐶𝑄 ↔ ({ 0 } ⊊ 𝑄 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑊)({ 0 } ⊊ 𝑠𝑠𝑄))))
3714, 32, 36mpbir2and 712 1 (𝜑 → { 0 }𝐶𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cdif 3878  wss 3881  wpss 3882  {csn 4525   class class class wbr 5030  cfv 6324  Basecbs 16475  0gc0g 16705  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LVecclvec 19867  LSAtomsclsa 36270  L clcv 36314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-lcv 36315
This theorem is referenced by:  lsatcveq0  36328  lsat0cv  36329  lsatcv0eq  36343  mapdcnvatN  38962  mapdat  38963
  Copyright terms: Public domain W3C validator