MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem6 Structured version   Visualization version   GIF version

Theorem evlslem6 21491
Description: Lemma for evlseu 21493. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem1.i (𝜑𝐼𝑊)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem6.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evlslem6 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
Distinct variable groups:   𝜑,𝑏   𝐶,𝑏   𝐷,𝑏   ,𝐼   𝑅,𝑏   𝑆,𝑏   𝑌,𝑏   ,𝑏
Allowed substitution hints:   𝜑(,𝑝)   𝐵(,𝑝,𝑏)   𝐶(,𝑝)   𝐷(,𝑝)   𝑃(,𝑝,𝑏)   𝑅(,𝑝)   𝑆(,𝑝)   𝑇(,𝑝,𝑏)   · (,𝑝,𝑏)   𝐸(,𝑝,𝑏)   (,𝑝,𝑏)   𝐹(,𝑝,𝑏)   𝐺(,𝑝,𝑏)   𝐼(𝑝,𝑏)   𝑉(,𝑝,𝑏)   𝑊(,𝑝,𝑏)   𝑌(,𝑝)

Proof of Theorem evlslem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlslem1.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2 crngring 19976 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
43adantr 481 . . . 4 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
5 evlslem1.f . . . . . . 7 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
6 eqid 2736 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
7 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
86, 7rhmf 20158 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶)
95, 8syl 17 . . . . . 6 (𝜑𝐹:(Base‘𝑅)⟶𝐶)
109adantr 481 . . . . 5 ((𝜑𝑏𝐷) → 𝐹:(Base‘𝑅)⟶𝐶)
11 evlslem1.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
12 evlslem1.b . . . . . . 7 𝐵 = (Base‘𝑃)
13 evlslem1.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
14 evlslem6.y . . . . . . 7 (𝜑𝑌𝐵)
1511, 6, 12, 13, 14mplelf 21404 . . . . . 6 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1615ffvelcdmda 7035 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ (Base‘𝑅))
1710, 16ffvelcdmd 7036 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ 𝐶)
18 evlslem1.t . . . . . 6 𝑇 = (mulGrp‘𝑆)
1918, 7mgpbas 19902 . . . . 5 𝐶 = (Base‘𝑇)
20 evlslem1.x . . . . 5 = (.g𝑇)
2118crngmgp 19972 . . . . . . 7 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
221, 21syl 17 . . . . . 6 (𝜑𝑇 ∈ CMnd)
2322adantr 481 . . . . 5 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
24 simpr 485 . . . . 5 ((𝜑𝑏𝐷) → 𝑏𝐷)
25 evlslem1.g . . . . . 6 (𝜑𝐺:𝐼𝐶)
2625adantr 481 . . . . 5 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
2713, 19, 20, 23, 24, 26psrbagev2 21487 . . . 4 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
28 evlslem1.m . . . . 5 · = (.r𝑆)
297, 28ringcl 19981 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
304, 17, 27, 29syl3anc 1371 . . 3 ((𝜑𝑏𝐷) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
3130fmpttd 7063 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
32 ovexd 7392 . . . . 5 (𝜑 → (ℕ0m 𝐼) ∈ V)
3313, 32rabexd 5290 . . . 4 (𝜑𝐷 ∈ V)
3433mptexd 7174 . . 3 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∈ V)
35 funmpt 6539 . . . 4 Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
3635a1i 11 . . 3 (𝜑 → Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
37 fvexd 6857 . . 3 (𝜑 → (0g𝑆) ∈ V)
38 eqid 2736 . . . . 5 (0g𝑅) = (0g𝑅)
39 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
4011, 12, 38, 14, 39mplelsfi 21401 . . . 4 (𝜑𝑌 finSupp (0g𝑅))
4140fsuppimpd 9312 . . 3 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
4215feqmptd 6910 . . . . . . 7 (𝜑𝑌 = (𝑏𝐷 ↦ (𝑌𝑏)))
4342oveq1d 7372 . . . . . 6 (𝜑 → (𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)))
44 eqimss2 4001 . . . . . 6 ((𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
4543, 44syl 17 . . . . 5 (𝜑 → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
46 rhmghm 20157 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
47 eqid 2736 . . . . . . 7 (0g𝑆) = (0g𝑆)
4838, 47ghmid 19014 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
495, 46, 483syl 18 . . . . 5 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
50 fvexd 6857 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ V)
51 fvexd 6857 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
5245, 49, 50, 51suppssfv 8133 . . . 4 (𝜑 → ((𝑏𝐷 ↦ (𝐹‘(𝑌𝑏))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
537, 28, 47ringlz 20011 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
543, 53sylan 580 . . . 4 ((𝜑𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
55 fvexd 6857 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ V)
5652, 54, 55, 27, 37suppssov1 8129 . . 3 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
57 suppssfifsupp 9320 . . 3 ((((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∈ V ∧ Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∧ (0g𝑆) ∈ V) ∧ ((𝑌 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))) → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
5834, 36, 37, 41, 56, 57syl32anc 1378 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
5931, 58jca 512 1 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  wss 3910   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615   supp csupp 8092  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  cn 12153  0cn0 12413  Basecbs 17083  .rcmulr 17134  0gc0g 17321   Σg cgsu 17322  .gcmg 18872   GrpHom cghm 19005  CMndccmn 19562  mulGrpcmgp 19896  Ringcrg 19964  CRingccrg 19965   RingHom crh 20143   mVar cmvr 21307   mPoly cmpl 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-tset 17152  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-mulg 18873  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-rnghom 20146  df-psr 21311  df-mpl 21313
This theorem is referenced by:  evlslem1  21492
  Copyright terms: Public domain W3C validator