MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem6 Structured version   Visualization version   GIF version

Theorem evlslem6 22027
Description: Lemma for evlseu 22029. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem1.i (𝜑𝐼𝑊)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem6.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evlslem6 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
Distinct variable groups:   𝜑,𝑏   𝐶,𝑏   𝐷,𝑏   ,𝐼   𝑅,𝑏   𝑆,𝑏   𝑌,𝑏   ,𝑏
Allowed substitution hints:   𝜑(,𝑝)   𝐵(,𝑝,𝑏)   𝐶(,𝑝)   𝐷(,𝑝)   𝑃(,𝑝,𝑏)   𝑅(,𝑝)   𝑆(,𝑝)   𝑇(,𝑝,𝑏)   · (,𝑝,𝑏)   𝐸(,𝑝,𝑏)   (,𝑝,𝑏)   𝐹(,𝑝,𝑏)   𝐺(,𝑝,𝑏)   𝐼(𝑝,𝑏)   𝑉(,𝑝,𝑏)   𝑊(,𝑝,𝑏)   𝑌(,𝑝)

Proof of Theorem evlslem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlslem1.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2 crngring 20171 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
43adantr 480 . . . 4 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
5 evlslem1.f . . . . . . 7 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
6 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
7 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
86, 7rhmf 20411 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶)
95, 8syl 17 . . . . . 6 (𝜑𝐹:(Base‘𝑅)⟶𝐶)
109adantr 480 . . . . 5 ((𝜑𝑏𝐷) → 𝐹:(Base‘𝑅)⟶𝐶)
11 evlslem1.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
12 evlslem1.b . . . . . . 7 𝐵 = (Base‘𝑃)
13 evlslem1.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
14 evlslem6.y . . . . . . 7 (𝜑𝑌𝐵)
1511, 6, 12, 13, 14mplelf 21944 . . . . . 6 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1615ffvelcdmda 7026 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ (Base‘𝑅))
1710, 16ffvelcdmd 7027 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ 𝐶)
18 evlslem1.t . . . . . 6 𝑇 = (mulGrp‘𝑆)
1918, 7mgpbas 20071 . . . . 5 𝐶 = (Base‘𝑇)
20 evlslem1.x . . . . 5 = (.g𝑇)
2118crngmgp 20167 . . . . . . 7 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
221, 21syl 17 . . . . . 6 (𝜑𝑇 ∈ CMnd)
2322adantr 480 . . . . 5 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
24 simpr 484 . . . . 5 ((𝜑𝑏𝐷) → 𝑏𝐷)
25 evlslem1.g . . . . . 6 (𝜑𝐺:𝐼𝐶)
2625adantr 480 . . . . 5 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
2713, 19, 20, 23, 24, 26psrbagev2 22024 . . . 4 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
28 evlslem1.m . . . . 5 · = (.r𝑆)
297, 28ringcl 20176 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
304, 17, 27, 29syl3anc 1373 . . 3 ((𝜑𝑏𝐷) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
3130fmpttd 7057 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
32 ovexd 7390 . . . . 5 (𝜑 → (ℕ0m 𝐼) ∈ V)
3313, 32rabexd 5282 . . . 4 (𝜑𝐷 ∈ V)
3433mptexd 7167 . . 3 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∈ V)
35 funmpt 6527 . . . 4 Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
3635a1i 11 . . 3 (𝜑 → Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
37 fvexd 6846 . . 3 (𝜑 → (0g𝑆) ∈ V)
38 eqid 2733 . . . . 5 (0g𝑅) = (0g𝑅)
3911, 12, 38, 14mplelsfi 21941 . . . 4 (𝜑𝑌 finSupp (0g𝑅))
4039fsuppimpd 9264 . . 3 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
4115feqmptd 6899 . . . . . . 7 (𝜑𝑌 = (𝑏𝐷 ↦ (𝑌𝑏)))
4241oveq1d 7370 . . . . . 6 (𝜑 → (𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)))
43 eqimss2 3990 . . . . . 6 ((𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
4442, 43syl 17 . . . . 5 (𝜑 → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
45 rhmghm 20410 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
46 eqid 2733 . . . . . . 7 (0g𝑆) = (0g𝑆)
4738, 46ghmid 19142 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
485, 45, 473syl 18 . . . . 5 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
49 fvexd 6846 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ V)
50 fvexd 6846 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
5144, 48, 49, 50suppssfv 8141 . . . 4 (𝜑 → ((𝑏𝐷 ↦ (𝐹‘(𝑌𝑏))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
527, 28, 46ringlz 20219 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
533, 52sylan 580 . . . 4 ((𝜑𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
54 fvexd 6846 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ V)
5551, 53, 54, 27, 37suppssov1 8136 . . 3 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
56 suppssfifsupp 9275 . . 3 ((((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∈ V ∧ Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∧ (0g𝑆) ∈ V) ∧ ((𝑌 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))) → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
5734, 36, 37, 40, 55, 56syl32anc 1380 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
5831, 57jca 511 1 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176  ccnv 5620  cima 5624  Fun wfun 6483  wf 6485  cfv 6489  (class class class)co 7355  f cof 7617   supp csupp 8099  m cmap 8759  Fincfn 8879   finSupp cfsupp 9256  cn 12136  0cn0 12392  Basecbs 17127  .rcmulr 17169  0gc0g 17350   Σg cgsu 17351  .gcmg 18988   GrpHom cghm 19132  CMndccmn 19700  mulGrpcmgp 20066  Ringcrg 20159  CRingccrg 20160   RingHom crh 20396   mVar cmvr 21852   mPoly cmpl 21853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-tset 17187  df-0g 17352  df-gsum 17353  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-grp 18857  df-minusg 18858  df-mulg 18989  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-rhm 20399  df-psr 21856  df-mpl 21858
This theorem is referenced by:  evlslem1  22028
  Copyright terms: Public domain W3C validator