| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlslem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for evlseu 22013. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| evlslem1.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| evlslem1.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlslem1.c | ⊢ 𝐶 = (Base‘𝑆) |
| evlslem1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlslem1.t | ⊢ 𝑇 = (mulGrp‘𝑆) |
| evlslem1.x | ⊢ ↑ = (.g‘𝑇) |
| evlslem1.m | ⊢ · = (.r‘𝑆) |
| evlslem1.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| evlslem1.e | ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
| evlslem1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| evlslem1.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evlslem1.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlslem1.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| evlslem1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
| evlslem6.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| evlslem6 | ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem1.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 2 | crngring 20158 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
| 5 | evlslem1.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
| 6 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | evlslem1.c | . . . . . . . 8 ⊢ 𝐶 = (Base‘𝑆) | |
| 8 | 6, 7 | rhmf 20397 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶) |
| 9 | 5, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶𝐶) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐹:(Base‘𝑅)⟶𝐶) |
| 11 | evlslem1.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 12 | evlslem1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
| 13 | evlslem1.d | . . . . . . 7 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 14 | evlslem6.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 15 | 11, 6, 12, 13, 14 | mplelf 21930 | . . . . . 6 ⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
| 16 | 15 | ffvelcdmda 7012 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑌‘𝑏) ∈ (Base‘𝑅)) |
| 17 | 10, 16 | ffvelcdmd 7013 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘(𝑌‘𝑏)) ∈ 𝐶) |
| 18 | evlslem1.t | . . . . . 6 ⊢ 𝑇 = (mulGrp‘𝑆) | |
| 19 | 18, 7 | mgpbas 20058 | . . . . 5 ⊢ 𝐶 = (Base‘𝑇) |
| 20 | evlslem1.x | . . . . 5 ⊢ ↑ = (.g‘𝑇) | |
| 21 | 18 | crngmgp 20154 | . . . . . . 7 ⊢ (𝑆 ∈ CRing → 𝑇 ∈ CMnd) |
| 22 | 1, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ CMnd) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑇 ∈ CMnd) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
| 25 | evlslem1.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐺:𝐼⟶𝐶) |
| 27 | 13, 19, 20, 23, 24, 26 | psrbagev2 22008 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑇 Σg (𝑏 ∘f ↑ 𝐺)) ∈ 𝐶) |
| 28 | evlslem1.m | . . . . 5 ⊢ · = (.r‘𝑆) | |
| 29 | 7, 28 | ringcl 20163 | . . . 4 ⊢ ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌‘𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏 ∘f ↑ 𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) ∈ 𝐶) |
| 30 | 4, 17, 27, 29 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) ∈ 𝐶) |
| 31 | 30 | fmpttd 7043 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶) |
| 32 | ovexd 7376 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 33 | 13, 32 | rabexd 5273 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 34 | 33 | mptexd 7153 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∈ V) |
| 35 | funmpt 6514 | . . . 4 ⊢ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) | |
| 36 | 35 | a1i 11 | . . 3 ⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
| 37 | fvexd 6832 | . . 3 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 38 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 39 | 11, 12, 38, 14 | mplelsfi 21927 | . . . 4 ⊢ (𝜑 → 𝑌 finSupp (0g‘𝑅)) |
| 40 | 39 | fsuppimpd 9248 | . . 3 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) ∈ Fin) |
| 41 | 15 | feqmptd 6885 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = (𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏))) |
| 42 | 41 | oveq1d 7356 | . . . . . 6 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) = ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅))) |
| 43 | eqimss2 3989 | . . . . . 6 ⊢ ((𝑌 supp (0g‘𝑅)) = ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) → ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) ⊆ (𝑌 supp (0g‘𝑅))) | |
| 44 | 42, 43 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) ⊆ (𝑌 supp (0g‘𝑅))) |
| 45 | rhmghm 20396 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 46 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 47 | 38, 46 | ghmid 19129 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 48 | 5, 45, 47 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
| 49 | fvexd 6832 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑌‘𝑏) ∈ V) | |
| 50 | fvexd 6832 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 51 | 44, 48, 49, 50 | suppssfv 8127 | . . . 4 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (𝐹‘(𝑌‘𝑏))) supp (0g‘𝑆)) ⊆ (𝑌 supp (0g‘𝑅))) |
| 52 | 7, 28, 46 | ringlz 20206 | . . . . 5 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝐶) → ((0g‘𝑆) · 𝑥) = (0g‘𝑆)) |
| 53 | 3, 52 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((0g‘𝑆) · 𝑥) = (0g‘𝑆)) |
| 54 | fvexd 6832 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘(𝑌‘𝑏)) ∈ V) | |
| 55 | 51, 53, 54, 27, 37 | suppssov1 8122 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) supp (0g‘𝑆)) ⊆ (𝑌 supp (0g‘𝑅))) |
| 56 | suppssfifsupp 9259 | . . 3 ⊢ ((((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∈ V ∧ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∧ (0g‘𝑆) ∈ V) ∧ ((𝑌 supp (0g‘𝑅)) ∈ Fin ∧ ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) supp (0g‘𝑆)) ⊆ (𝑌 supp (0g‘𝑅)))) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆)) | |
| 57 | 34, 36, 37, 40, 55, 56 | syl32anc 1380 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆)) |
| 58 | 31, 57 | jca 511 | 1 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 ◡ccnv 5610 “ cima 5614 Fun wfun 6470 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 finSupp cfsupp 9240 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 .rcmulr 17157 0gc0g 17338 Σg cgsu 17339 .gcmg 18975 GrpHom cghm 19119 CMndccmn 19687 mulGrpcmgp 20053 Ringcrg 20146 CRingccrg 20147 RingHom crh 20382 mVar cmvr 21837 mPoly cmpl 21838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-tset 17175 df-0g 17340 df-gsum 17341 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-minusg 18845 df-mulg 18976 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-rhm 20385 df-psr 21841 df-mpl 21843 |
| This theorem is referenced by: evlslem1 22012 |
| Copyright terms: Public domain | W3C validator |