![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlslem6 | Structured version Visualization version GIF version |
Description: Lemma for evlseu 21615. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.) |
Ref | Expression |
---|---|
evlslem1.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
evlslem1.b | ⊢ 𝐵 = (Base‘𝑃) |
evlslem1.c | ⊢ 𝐶 = (Base‘𝑆) |
evlslem1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
evlslem1.t | ⊢ 𝑇 = (mulGrp‘𝑆) |
evlslem1.x | ⊢ ↑ = (.g‘𝑇) |
evlslem1.m | ⊢ · = (.r‘𝑆) |
evlslem1.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
evlslem1.e | ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) |
evlslem1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
evlslem1.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evlslem1.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlslem1.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
evlslem1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
evlslem6.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
evlslem6 | ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlslem1.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
2 | crngring 20050 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Ring) |
4 | 3 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
5 | evlslem1.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | |
6 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | evlslem1.c | . . . . . . . 8 ⊢ 𝐶 = (Base‘𝑆) | |
8 | 6, 7 | rhmf 20241 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶) |
9 | 5, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶𝐶) |
10 | 9 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐹:(Base‘𝑅)⟶𝐶) |
11 | evlslem1.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
12 | evlslem1.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
13 | evlslem1.d | . . . . . . 7 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
14 | evlslem6.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
15 | 11, 6, 12, 13, 14 | mplelf 21526 | . . . . . 6 ⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
16 | 15 | ffvelcdmda 7074 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑌‘𝑏) ∈ (Base‘𝑅)) |
17 | 10, 16 | ffvelcdmd 7075 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘(𝑌‘𝑏)) ∈ 𝐶) |
18 | evlslem1.t | . . . . . 6 ⊢ 𝑇 = (mulGrp‘𝑆) | |
19 | 18, 7 | mgpbas 19976 | . . . . 5 ⊢ 𝐶 = (Base‘𝑇) |
20 | evlslem1.x | . . . . 5 ⊢ ↑ = (.g‘𝑇) | |
21 | 18 | crngmgp 20046 | . . . . . . 7 ⊢ (𝑆 ∈ CRing → 𝑇 ∈ CMnd) |
22 | 1, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ CMnd) |
23 | 22 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑇 ∈ CMnd) |
24 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
25 | evlslem1.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
26 | 25 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐺:𝐼⟶𝐶) |
27 | 13, 19, 20, 23, 24, 26 | psrbagev2 21609 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑇 Σg (𝑏 ∘f ↑ 𝐺)) ∈ 𝐶) |
28 | evlslem1.m | . . . . 5 ⊢ · = (.r‘𝑆) | |
29 | 7, 28 | ringcl 20055 | . . . 4 ⊢ ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌‘𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏 ∘f ↑ 𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) ∈ 𝐶) |
30 | 4, 17, 27, 29 | syl3anc 1372 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))) ∈ 𝐶) |
31 | 30 | fmpttd 7102 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶) |
32 | ovexd 7431 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
33 | 13, 32 | rabexd 5329 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
34 | 33 | mptexd 7213 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∈ V) |
35 | funmpt 6578 | . . . 4 ⊢ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) | |
36 | 35 | a1i 11 | . . 3 ⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺))))) |
37 | fvexd 6896 | . . 3 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
38 | eqid 2733 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
39 | evlslem1.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
40 | 11, 12, 38, 14, 39 | mplelsfi 21523 | . . . 4 ⊢ (𝜑 → 𝑌 finSupp (0g‘𝑅)) |
41 | 40 | fsuppimpd 9357 | . . 3 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) ∈ Fin) |
42 | 15 | feqmptd 6949 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = (𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏))) |
43 | 42 | oveq1d 7411 | . . . . . 6 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) = ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅))) |
44 | eqimss2 4039 | . . . . . 6 ⊢ ((𝑌 supp (0g‘𝑅)) = ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) → ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) ⊆ (𝑌 supp (0g‘𝑅))) | |
45 | 43, 44 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) ⊆ (𝑌 supp (0g‘𝑅))) |
46 | rhmghm 20240 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
47 | eqid 2733 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
48 | 38, 47 | ghmid 19083 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
49 | 5, 46, 48 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
50 | fvexd 6896 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑌‘𝑏) ∈ V) | |
51 | fvexd 6896 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
52 | 45, 49, 50, 51 | suppssfv 8174 | . . . 4 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (𝐹‘(𝑌‘𝑏))) supp (0g‘𝑆)) ⊆ (𝑌 supp (0g‘𝑅))) |
53 | 7, 28, 47 | ringlz 20088 | . . . . 5 ⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝐶) → ((0g‘𝑆) · 𝑥) = (0g‘𝑆)) |
54 | 3, 53 | sylan 581 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((0g‘𝑆) · 𝑥) = (0g‘𝑆)) |
55 | fvexd 6896 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘(𝑌‘𝑏)) ∈ V) | |
56 | 52, 54, 55, 27, 37 | suppssov1 8170 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) supp (0g‘𝑆)) ⊆ (𝑌 supp (0g‘𝑅))) |
57 | suppssfifsupp 9366 | . . 3 ⊢ ((((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∈ V ∧ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) ∧ (0g‘𝑆) ∈ V) ∧ ((𝑌 supp (0g‘𝑅)) ∈ Fin ∧ ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) supp (0g‘𝑆)) ⊆ (𝑌 supp (0g‘𝑅)))) → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆)) | |
58 | 34, 36, 37, 41, 56, 57 | syl32anc 1379 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆)) |
59 | 31, 58 | jca 513 | 1 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ⊆ wss 3946 class class class wbr 5144 ↦ cmpt 5227 ◡ccnv 5671 “ cima 5675 Fun wfun 6529 ⟶wf 6531 ‘cfv 6535 (class class class)co 7396 ∘f cof 7655 supp csupp 8133 ↑m cmap 8808 Fincfn 8927 finSupp cfsupp 9349 ℕcn 12199 ℕ0cn0 12459 Basecbs 17131 .rcmulr 17185 0gc0g 17372 Σg cgsu 17373 .gcmg 18935 GrpHom cghm 19074 CMndccmn 19632 mulGrpcmgp 19970 Ringcrg 20038 CRingccrg 20039 RingHom crh 20226 mVar cmvr 21429 mPoly cmpl 21430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-isom 6544 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-of 7657 df-om 7843 df-1st 7962 df-2nd 7963 df-supp 8134 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-fsupp 9350 df-oi 9492 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-7 12267 df-8 12268 df-9 12269 df-n0 12460 df-z 12546 df-uz 12810 df-fz 13472 df-fzo 13615 df-seq 13954 df-hash 14278 df-struct 17067 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-mulr 17198 df-sca 17200 df-vsca 17201 df-tset 17203 df-0g 17374 df-gsum 17375 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-mhm 18658 df-grp 18809 df-minusg 18810 df-mulg 18936 df-ghm 19075 df-cntz 19166 df-cmn 19634 df-mgp 19971 df-ur 19988 df-ring 20040 df-cring 20041 df-rnghom 20229 df-psr 21433 df-mpl 21435 |
This theorem is referenced by: evlslem1 21614 |
Copyright terms: Public domain | W3C validator |