MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem6 Structured version   Visualization version   GIF version

Theorem evlslem6 21613
Description: Lemma for evlseu 21615. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem1.i (𝜑𝐼𝑊)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem6.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evlslem6 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
Distinct variable groups:   𝜑,𝑏   𝐶,𝑏   𝐷,𝑏   ,𝐼   𝑅,𝑏   𝑆,𝑏   𝑌,𝑏   ,𝑏
Allowed substitution hints:   𝜑(,𝑝)   𝐵(,𝑝,𝑏)   𝐶(,𝑝)   𝐷(,𝑝)   𝑃(,𝑝,𝑏)   𝑅(,𝑝)   𝑆(,𝑝)   𝑇(,𝑝,𝑏)   · (,𝑝,𝑏)   𝐸(,𝑝,𝑏)   (,𝑝,𝑏)   𝐹(,𝑝,𝑏)   𝐺(,𝑝,𝑏)   𝐼(𝑝,𝑏)   𝑉(,𝑝,𝑏)   𝑊(,𝑝,𝑏)   𝑌(,𝑝)

Proof of Theorem evlslem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlslem1.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2 crngring 20050 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
43adantr 482 . . . 4 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
5 evlslem1.f . . . . . . 7 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
6 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
7 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
86, 7rhmf 20241 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐶)
95, 8syl 17 . . . . . 6 (𝜑𝐹:(Base‘𝑅)⟶𝐶)
109adantr 482 . . . . 5 ((𝜑𝑏𝐷) → 𝐹:(Base‘𝑅)⟶𝐶)
11 evlslem1.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
12 evlslem1.b . . . . . . 7 𝐵 = (Base‘𝑃)
13 evlslem1.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
14 evlslem6.y . . . . . . 7 (𝜑𝑌𝐵)
1511, 6, 12, 13, 14mplelf 21526 . . . . . 6 (𝜑𝑌:𝐷⟶(Base‘𝑅))
1615ffvelcdmda 7074 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ (Base‘𝑅))
1710, 16ffvelcdmd 7075 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ 𝐶)
18 evlslem1.t . . . . . 6 𝑇 = (mulGrp‘𝑆)
1918, 7mgpbas 19976 . . . . 5 𝐶 = (Base‘𝑇)
20 evlslem1.x . . . . 5 = (.g𝑇)
2118crngmgp 20046 . . . . . . 7 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
221, 21syl 17 . . . . . 6 (𝜑𝑇 ∈ CMnd)
2322adantr 482 . . . . 5 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
24 simpr 486 . . . . 5 ((𝜑𝑏𝐷) → 𝑏𝐷)
25 evlslem1.g . . . . . 6 (𝜑𝐺:𝐼𝐶)
2625adantr 482 . . . . 5 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
2713, 19, 20, 23, 24, 26psrbagev2 21609 . . . 4 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
28 evlslem1.m . . . . 5 · = (.r𝑆)
297, 28ringcl 20055 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
304, 17, 27, 29syl3anc 1372 . . 3 ((𝜑𝑏𝐷) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
3130fmpttd 7102 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
32 ovexd 7431 . . . . 5 (𝜑 → (ℕ0m 𝐼) ∈ V)
3313, 32rabexd 5329 . . . 4 (𝜑𝐷 ∈ V)
3433mptexd 7213 . . 3 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∈ V)
35 funmpt 6578 . . . 4 Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
3635a1i 11 . . 3 (𝜑 → Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
37 fvexd 6896 . . 3 (𝜑 → (0g𝑆) ∈ V)
38 eqid 2733 . . . . 5 (0g𝑅) = (0g𝑅)
39 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
4011, 12, 38, 14, 39mplelsfi 21523 . . . 4 (𝜑𝑌 finSupp (0g𝑅))
4140fsuppimpd 9357 . . 3 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
4215feqmptd 6949 . . . . . . 7 (𝜑𝑌 = (𝑏𝐷 ↦ (𝑌𝑏)))
4342oveq1d 7411 . . . . . 6 (𝜑 → (𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)))
44 eqimss2 4039 . . . . . 6 ((𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
4543, 44syl 17 . . . . 5 (𝜑 → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
46 rhmghm 20240 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
47 eqid 2733 . . . . . . 7 (0g𝑆) = (0g𝑆)
4838, 47ghmid 19083 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
495, 46, 483syl 18 . . . . 5 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
50 fvexd 6896 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ V)
51 fvexd 6896 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
5245, 49, 50, 51suppssfv 8174 . . . 4 (𝜑 → ((𝑏𝐷 ↦ (𝐹‘(𝑌𝑏))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
537, 28, 47ringlz 20088 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
543, 53sylan 581 . . . 4 ((𝜑𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
55 fvexd 6896 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ V)
5652, 54, 55, 27, 37suppssov1 8170 . . 3 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
57 suppssfifsupp 9366 . . 3 ((((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∈ V ∧ Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) ∧ (0g𝑆) ∈ V) ∧ ((𝑌 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))) → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
5834, 36, 37, 41, 56, 57syl32anc 1379 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆))
5931, 58jca 513 1 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) finSupp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475  wss 3946   class class class wbr 5144  cmpt 5227  ccnv 5671  cima 5675  Fun wfun 6529  wf 6531  cfv 6535  (class class class)co 7396  f cof 7655   supp csupp 8133  m cmap 8808  Fincfn 8927   finSupp cfsupp 9349  cn 12199  0cn0 12459  Basecbs 17131  .rcmulr 17185  0gc0g 17372   Σg cgsu 17373  .gcmg 18935   GrpHom cghm 19074  CMndccmn 19632  mulGrpcmgp 19970  Ringcrg 20038  CRingccrg 20039   RingHom crh 20226   mVar cmvr 21429   mPoly cmpl 21430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-supp 8134  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fsupp 9350  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-fzo 13615  df-seq 13954  df-hash 14278  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-sca 17200  df-vsca 17201  df-tset 17203  df-0g 17374  df-gsum 17375  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-mhm 18658  df-grp 18809  df-minusg 18810  df-mulg 18936  df-ghm 19075  df-cntz 19166  df-cmn 19634  df-mgp 19971  df-ur 19988  df-ring 20040  df-cring 20041  df-rnghom 20229  df-psr 21433  df-mpl 21435
This theorem is referenced by:  evlslem1  21614
  Copyright terms: Public domain W3C validator