MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem6 Structured version   Visualization version   GIF version

Theorem evlslem6 19873
Description: Lemma for evlseu 19876. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.k 𝐾 = (Base‘𝑅)
evlslem1.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
evlslem1.i (𝜑𝐼 ∈ V)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem6.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evlslem6 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
Distinct variable groups:   𝜑,𝑏   𝐶,𝑏   𝐷,𝑏   ,𝐼   𝑅,𝑏   𝑆,𝑏   𝑌,𝑏   ,𝑏
Allowed substitution hints:   𝜑(,𝑝)   𝐵(,𝑝,𝑏)   𝐶(,𝑝)   𝐷(,𝑝)   𝑃(,𝑝,𝑏)   𝑅(,𝑝)   𝑆(,𝑝)   𝑇(,𝑝,𝑏)   · (,𝑝,𝑏)   𝐸(,𝑝,𝑏)   (,𝑝,𝑏)   𝐹(,𝑝,𝑏)   𝐺(,𝑝,𝑏)   𝐼(𝑝,𝑏)   𝐾(,𝑝,𝑏)   𝑉(,𝑝,𝑏)   𝑌(,𝑝)

Proof of Theorem evlslem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlslem1.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2 crngring 18912 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
43adantr 474 . . . 4 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
5 evlslem1.f . . . . . . 7 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
6 evlslem1.k . . . . . . . 8 𝐾 = (Base‘𝑅)
7 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
86, 7rhmf 19082 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
95, 8syl 17 . . . . . 6 (𝜑𝐹:𝐾𝐶)
109adantr 474 . . . . 5 ((𝜑𝑏𝐷) → 𝐹:𝐾𝐶)
11 evlslem1.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
12 evlslem1.b . . . . . . 7 𝐵 = (Base‘𝑃)
13 evlslem1.d . . . . . . 7 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
14 evlslem6.y . . . . . . 7 (𝜑𝑌𝐵)
1511, 6, 12, 13, 14mplelf 19794 . . . . . 6 (𝜑𝑌:𝐷𝐾)
1615ffvelrnda 6608 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ 𝐾)
1710, 16ffvelrnd 6609 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ 𝐶)
18 evlslem1.t . . . . . 6 𝑇 = (mulGrp‘𝑆)
1918, 7mgpbas 18849 . . . . 5 𝐶 = (Base‘𝑇)
20 evlslem1.x . . . . 5 = (.g𝑇)
21 eqid 2825 . . . . 5 (0g𝑇) = (0g𝑇)
2218crngmgp 18909 . . . . . . 7 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
231, 22syl 17 . . . . . 6 (𝜑𝑇 ∈ CMnd)
2423adantr 474 . . . . 5 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
25 simpr 479 . . . . 5 ((𝜑𝑏𝐷) → 𝑏𝐷)
26 evlslem1.g . . . . . 6 (𝜑𝐺:𝐼𝐶)
2726adantr 474 . . . . 5 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
28 evlslem1.i . . . . . 6 (𝜑𝐼 ∈ V)
2928adantr 474 . . . . 5 ((𝜑𝑏𝐷) → 𝐼 ∈ V)
3013, 19, 20, 21, 24, 25, 27, 29psrbagev2 19871 . . . 4 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶)
31 evlslem1.m . . . . 5 · = (.r𝑆)
327, 31ringcl 18915 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ 𝐶)
334, 17, 30, 32syl3anc 1496 . . 3 ((𝜑𝑏𝐷) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ 𝐶)
3433fmpttd 6634 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶)
35 ovexd 6939 . . . . 5 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
3613, 35rabexd 5038 . . . 4 (𝜑𝐷 ∈ V)
37 mptexg 6740 . . . 4 (𝐷 ∈ V → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V)
3836, 37syl 17 . . 3 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V)
39 funmpt 6161 . . . 4 Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
4039a1i 11 . . 3 (𝜑 → Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
41 fvexd 6448 . . 3 (𝜑 → (0g𝑆) ∈ V)
42 eqid 2825 . . . . 5 (0g𝑅) = (0g𝑅)
43 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
4411, 12, 42, 14, 43mplelsfi 19851 . . . 4 (𝜑𝑌 finSupp (0g𝑅))
4544fsuppimpd 8551 . . 3 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
4615feqmptd 6496 . . . . . . 7 (𝜑𝑌 = (𝑏𝐷 ↦ (𝑌𝑏)))
4746oveq1d 6920 . . . . . 6 (𝜑 → (𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)))
48 eqimss2 3883 . . . . . 6 ((𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
4947, 48syl 17 . . . . 5 (𝜑 → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
50 rhmghm 19081 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
51 eqid 2825 . . . . . . 7 (0g𝑆) = (0g𝑆)
5242, 51ghmid 18017 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
535, 50, 523syl 18 . . . . 5 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
54 fvexd 6448 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ V)
55 fvexd 6448 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
5649, 53, 54, 55suppssfv 7596 . . . 4 (𝜑 → ((𝑏𝐷 ↦ (𝐹‘(𝑌𝑏))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
577, 31, 51ringlz 18941 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
583, 57sylan 577 . . . 4 ((𝜑𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
59 fvexd 6448 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ V)
6056, 58, 59, 30, 41suppssov1 7592 . . 3 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
61 suppssfifsupp 8559 . . 3 ((((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V ∧ Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∧ (0g𝑆) ∈ V) ∧ ((𝑌 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))) → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
6238, 40, 41, 45, 60, 61syl32anc 1503 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
6334, 62jca 509 1 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  {crab 3121  Vcvv 3414  wss 3798   class class class wbr 4873  cmpt 4952  ccnv 5341  cima 5345  Fun wfun 6117  wf 6119  cfv 6123  (class class class)co 6905  𝑓 cof 7155   supp csupp 7559  𝑚 cmap 8122  Fincfn 8222   finSupp cfsupp 8544  cn 11350  0cn0 11618  Basecbs 16222  .rcmulr 16306  0gc0g 16453   Σg cgsu 16454  .gcmg 17894   GrpHom cghm 18008  CMndccmn 18546  mulGrpcmgp 18843  Ringcrg 18901  CRingccrg 18902   RingHom crh 19068   mVar cmvr 19713   mPoly cmpl 19714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-sca 16321  df-vsca 16322  df-tset 16324  df-0g 16455  df-gsum 16456  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-grp 17779  df-minusg 17780  df-mulg 17895  df-ghm 18009  df-cntz 18100  df-cmn 18548  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-rnghom 19071  df-psr 19717  df-mpl 19719
This theorem is referenced by:  evlslem1  19875
  Copyright terms: Public domain W3C validator