![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdgf | Structured version Visualization version GIF version |
Description: The vertex degree function is a function from vertices to extended nonnegative integers. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
vtxdgf | ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺):𝑉⟶ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2726 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | eqid 2726 | . . 3 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
4 | 1, 2, 3 | vtxdgfval 29407 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
5 | eqid 2726 | . . . . 5 ⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)} | |
6 | fvex 6916 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
7 | dmexg 7916 | . . . . . 6 ⊢ ((iEdg‘𝐺) ∈ V → dom (iEdg‘𝐺) ∈ V) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → dom (iEdg‘𝐺) ∈ V) |
9 | 5, 8 | rabexd 5342 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V) |
10 | hashxnn0 14358 | . . . 4 ⊢ ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) ∈ ℕ0*) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) ∈ ℕ0*) |
12 | eqid 2726 | . . . . 5 ⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}} | |
13 | 12, 8 | rabexd 5342 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}} ∈ V) |
14 | hashxnn0 14358 | . . . 4 ⊢ ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}} ∈ V → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}) ∈ ℕ0*) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}) ∈ ℕ0*) |
16 | xnn0xaddcl 13270 | . . 3 ⊢ (((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) ∈ ℕ0* ∧ (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}) ∈ ℕ0*) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})) ∈ ℕ0*) | |
17 | 11, 15, 16 | syl2anc 582 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})) ∈ ℕ0*) |
18 | 4, 17 | fmpt3d 7132 | 1 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺):𝑉⟶ℕ0*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 {csn 4633 dom cdm 5684 ⟶wf 6552 ‘cfv 6556 (class class class)co 7426 ℕ0*cxnn0 12598 +𝑒 cxad 13146 ♯chash 14349 Vtxcvtx 28935 iEdgciedg 28936 VtxDegcvtxdg 29405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-card 9984 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-n0 12527 df-xnn0 12599 df-z 12613 df-uz 12877 df-xadd 13149 df-hash 14350 df-vtxdg 29406 |
This theorem is referenced by: vtxdgelxnn0 29412 vtxdgfisf 29416 |
Copyright terms: Public domain | W3C validator |