| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdgf | Structured version Visualization version GIF version | ||
| Description: The vertex degree function is a function from vertices to extended nonnegative integers. (Contributed by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| vtxdgf | ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺):𝑉⟶ℕ0*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
| 4 | 1, 2, 3 | vtxdgfval 29448 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
| 5 | eqid 2729 | . . . . 5 ⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)} | |
| 6 | fvex 6853 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
| 7 | dmexg 7857 | . . . . . 6 ⊢ ((iEdg‘𝐺) ∈ V → dom (iEdg‘𝐺) ∈ V) | |
| 8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → dom (iEdg‘𝐺) ∈ V) |
| 9 | 5, 8 | rabexd 5290 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V) |
| 10 | hashxnn0 14280 | . . . 4 ⊢ ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) ∈ ℕ0*) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) ∈ ℕ0*) |
| 12 | eqid 2729 | . . . . 5 ⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}} | |
| 13 | 12, 8 | rabexd 5290 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}} ∈ V) |
| 14 | hashxnn0 14280 | . . . 4 ⊢ ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}} ∈ V → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}) ∈ ℕ0*) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}) ∈ ℕ0*) |
| 16 | xnn0xaddcl 13171 | . . 3 ⊢ (((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) ∈ ℕ0* ∧ (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}) ∈ ℕ0*) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})) ∈ ℕ0*) | |
| 17 | 11, 15, 16 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})) ∈ ℕ0*) |
| 18 | 4, 17 | fmpt3d 7070 | 1 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺):𝑉⟶ℕ0*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 {csn 4585 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℕ0*cxnn0 12491 +𝑒 cxad 13046 ♯chash 14271 Vtxcvtx 28976 iEdgciedg 28977 VtxDegcvtxdg 29446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-xadd 13049 df-hash 14272 df-vtxdg 29447 |
| This theorem is referenced by: vtxdgelxnn0 29453 vtxdgfisf 29457 |
| Copyright terms: Public domain | W3C validator |