MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaspropd Structured version   Visualization version   GIF version

Theorem psrbaspropd 20012
Description: Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypothesis
Ref Expression
psrbaspropd.e (𝜑 → (Base‘𝑅) = (Base‘𝑆))
Assertion
Ref Expression
psrbaspropd (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))

Proof of Theorem psrbaspropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 eqid 2778 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2778 . . . 4 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
4 eqid 2778 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
5 simpr 479 . . . 4 ((𝜑𝐼 ∈ V) → 𝐼 ∈ V)
61, 2, 3, 4, 5psrbas 19786 . . 3 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑𝑚 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}))
7 eqid 2778 . . . . 5 (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆)
8 eqid 2778 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2778 . . . . 5 (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆))
107, 8, 3, 9, 5psrbas 19786 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑆) ↑𝑚 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}))
11 psrbaspropd.e . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑆))
1211adantr 474 . . . . 5 ((𝜑𝐼 ∈ V) → (Base‘𝑅) = (Base‘𝑆))
1312oveq1d 6939 . . . 4 ((𝜑𝐼 ∈ V) → ((Base‘𝑅) ↑𝑚 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) = ((Base‘𝑆) ↑𝑚 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}))
1410, 13eqtr4d 2817 . . 3 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑅) ↑𝑚 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}))
156, 14eqtr4d 2817 . 2 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
16 reldmpsr 19769 . . . . . 6 Rel dom mPwSer
1716ovprc1 6962 . . . . 5 𝐼 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
1816ovprc1 6962 . . . . 5 𝐼 ∈ V → (𝐼 mPwSer 𝑆) = ∅)
1917, 18eqtr4d 2817 . . . 4 𝐼 ∈ V → (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑆))
2019fveq2d 6452 . . 3 𝐼 ∈ V → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
2120adantl 475 . 2 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
2215, 21pm2.61dan 803 1 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  {crab 3094  Vcvv 3398  c0 4141  ccnv 5356  cima 5360  cfv 6137  (class class class)co 6924  𝑚 cmap 8142  Fincfn 8243  cn 11379  0cn0 11647  Basecbs 16266   mPwSer cmps 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-plusg 16362  df-mulr 16363  df-sca 16365  df-vsca 16366  df-tset 16368  df-psr 19764
This theorem is referenced by:  psrplusgpropd  20013  mplbaspropd  20014  psropprmul  20015
  Copyright terms: Public domain W3C validator