MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaspropd Structured version   Visualization version   GIF version

Theorem psrbaspropd 21978
Description: Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypothesis
Ref Expression
psrbaspropd.e (𝜑 → (Base‘𝑅) = (Base‘𝑆))
Assertion
Ref Expression
psrbaspropd (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))

Proof of Theorem psrbaspropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2731 . . . 4 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
4 eqid 2731 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
5 simpr 484 . . . 4 ((𝜑𝐼 ∈ V) → 𝐼 ∈ V)
61, 2, 3, 4, 5psrbas 21717 . . 3 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}))
7 eqid 2731 . . . . 5 (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆)
8 eqid 2731 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2731 . . . . 5 (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆))
107, 8, 3, 9, 5psrbas 21717 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑆) ↑m {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}))
11 psrbaspropd.e . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑆))
1211adantr 480 . . . . 5 ((𝜑𝐼 ∈ V) → (Base‘𝑅) = (Base‘𝑆))
1312oveq1d 7427 . . . 4 ((𝜑𝐼 ∈ V) → ((Base‘𝑅) ↑m {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) = ((Base‘𝑆) ↑m {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}))
1410, 13eqtr4d 2774 . . 3 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑅) ↑m {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}))
156, 14eqtr4d 2774 . 2 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
16 reldmpsr 21687 . . . . . 6 Rel dom mPwSer
1716ovprc1 7451 . . . . 5 𝐼 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
1816ovprc1 7451 . . . . 5 𝐼 ∈ V → (𝐼 mPwSer 𝑆) = ∅)
1917, 18eqtr4d 2774 . . . 4 𝐼 ∈ V → (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑆))
2019fveq2d 6895 . . 3 𝐼 ∈ V → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
2120adantl 481 . 2 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
2215, 21pm2.61dan 810 1 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  {crab 3431  Vcvv 3473  c0 4322  ccnv 5675  cima 5679  cfv 6543  (class class class)co 7412  m cmap 8824  Fincfn 8943  cn 12217  0cn0 12477  Basecbs 17149   mPwSer cmps 21677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-struct 17085  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-tset 17221  df-psr 21682
This theorem is referenced by:  psrplusgpropd  21979  mplbaspropd  21980  psropprmul  21981
  Copyright terms: Public domain W3C validator