Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrbaspropd | Structured version Visualization version GIF version |
Description: Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
psrbaspropd.e | ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) |
Ref | Expression |
---|---|
psrbaspropd | ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
2 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2736 | . . . 4 ⊢ {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
4 | eqid 2736 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
5 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐼 ∈ V) | |
6 | 1, 2, 3, 4, 5 | psrbas 21192 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin})) |
7 | eqid 2736 | . . . . 5 ⊢ (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆) | |
8 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | eqid 2736 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆)) | |
10 | 7, 8, 3, 9, 5 | psrbas 21192 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑆) ↑m {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin})) |
11 | psrbaspropd.e | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) | |
12 | 11 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝑅) = (Base‘𝑆)) |
13 | 12 | oveq1d 7322 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → ((Base‘𝑅) ↑m {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin}) = ((Base‘𝑆) ↑m {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin})) |
14 | 10, 13 | eqtr4d 2779 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑆)) = ((Base‘𝑅) ↑m {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin})) |
15 | 6, 14 | eqtr4d 2779 | . 2 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
16 | reldmpsr 21162 | . . . . . 6 ⊢ Rel dom mPwSer | |
17 | 16 | ovprc1 7346 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPwSer 𝑅) = ∅) |
18 | 16 | ovprc1 7346 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPwSer 𝑆) = ∅) |
19 | 17, 18 | eqtr4d 2779 | . . . 4 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑆)) |
20 | 19 | fveq2d 6808 | . . 3 ⊢ (¬ 𝐼 ∈ V → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
21 | 20 | adantl 483 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
22 | 15, 21 | pm2.61dan 811 | 1 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {crab 3284 Vcvv 3437 ∅c0 4262 ◡ccnv 5599 “ cima 5603 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 Fincfn 8764 ℕcn 12019 ℕ0cn0 12279 Basecbs 16957 mPwSer cmps 21152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-struct 16893 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-tset 17026 df-psr 21157 |
This theorem is referenced by: psrplusgpropd 21452 mplbaspropd 21453 psropprmul 21454 |
Copyright terms: Public domain | W3C validator |