![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resspsrbas | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
resspsr.s | β’ π = (πΌ mPwSer π ) |
resspsr.h | β’ π» = (π βΎs π) |
resspsr.u | β’ π = (πΌ mPwSer π») |
resspsr.b | β’ π΅ = (Baseβπ) |
resspsr.p | β’ π = (π βΎs π΅) |
resspsr.2 | β’ (π β π β (SubRingβπ )) |
Ref | Expression |
---|---|
resspsrbas | β’ (π β π΅ = (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . . . . 5 β’ (Baseβπ ) β V | |
2 | resspsr.2 | . . . . . . . 8 β’ (π β π β (SubRingβπ )) | |
3 | resspsr.h | . . . . . . . . 9 β’ π» = (π βΎs π) | |
4 | 3 | subrgbas 20327 | . . . . . . . 8 β’ (π β (SubRingβπ ) β π = (Baseβπ»)) |
5 | 2, 4 | syl 17 | . . . . . . 7 β’ (π β π = (Baseβπ»)) |
6 | eqid 2732 | . . . . . . . . 9 β’ (Baseβπ ) = (Baseβπ ) | |
7 | 6 | subrgss 20319 | . . . . . . . 8 β’ (π β (SubRingβπ ) β π β (Baseβπ )) |
8 | 2, 7 | syl 17 | . . . . . . 7 β’ (π β π β (Baseβπ )) |
9 | 5, 8 | eqsstrrd 4021 | . . . . . 6 β’ (π β (Baseβπ») β (Baseβπ )) |
10 | 9 | adantr 481 | . . . . 5 β’ ((π β§ πΌ β V) β (Baseβπ») β (Baseβπ )) |
11 | mapss 8882 | . . . . 5 β’ (((Baseβπ ) β V β§ (Baseβπ») β (Baseβπ )) β ((Baseβπ») βm {π β (β0 βm πΌ) β£ (β‘π β β) β Fin}) β ((Baseβπ ) βm {π β (β0 βm πΌ) β£ (β‘π β β) β Fin})) | |
12 | 1, 10, 11 | sylancr 587 | . . . 4 β’ ((π β§ πΌ β V) β ((Baseβπ») βm {π β (β0 βm πΌ) β£ (β‘π β β) β Fin}) β ((Baseβπ ) βm {π β (β0 βm πΌ) β£ (β‘π β β) β Fin})) |
13 | resspsr.u | . . . . 5 β’ π = (πΌ mPwSer π») | |
14 | eqid 2732 | . . . . 5 β’ (Baseβπ») = (Baseβπ») | |
15 | eqid 2732 | . . . . 5 β’ {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
16 | resspsr.b | . . . . 5 β’ π΅ = (Baseβπ) | |
17 | simpr 485 | . . . . 5 β’ ((π β§ πΌ β V) β πΌ β V) | |
18 | 13, 14, 15, 16, 17 | psrbas 21496 | . . . 4 β’ ((π β§ πΌ β V) β π΅ = ((Baseβπ») βm {π β (β0 βm πΌ) β£ (β‘π β β) β Fin})) |
19 | resspsr.s | . . . . 5 β’ π = (πΌ mPwSer π ) | |
20 | eqid 2732 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
21 | 19, 6, 15, 20, 17 | psrbas 21496 | . . . 4 β’ ((π β§ πΌ β V) β (Baseβπ) = ((Baseβπ ) βm {π β (β0 βm πΌ) β£ (β‘π β β) β Fin})) |
22 | 12, 18, 21 | 3sstr4d 4029 | . . 3 β’ ((π β§ πΌ β V) β π΅ β (Baseβπ)) |
23 | reldmpsr 21466 | . . . . . . . . 9 β’ Rel dom mPwSer | |
24 | 23 | ovprc1 7447 | . . . . . . . 8 β’ (Β¬ πΌ β V β (πΌ mPwSer π») = β ) |
25 | 13, 24 | eqtrid 2784 | . . . . . . 7 β’ (Β¬ πΌ β V β π = β ) |
26 | 25 | adantl 482 | . . . . . 6 β’ ((π β§ Β¬ πΌ β V) β π = β ) |
27 | 26 | fveq2d 6895 | . . . . 5 β’ ((π β§ Β¬ πΌ β V) β (Baseβπ) = (Baseββ )) |
28 | base0 17148 | . . . . 5 β’ β = (Baseββ ) | |
29 | 27, 16, 28 | 3eqtr4g 2797 | . . . 4 β’ ((π β§ Β¬ πΌ β V) β π΅ = β ) |
30 | 0ss 4396 | . . . 4 β’ β β (Baseβπ) | |
31 | 29, 30 | eqsstrdi 4036 | . . 3 β’ ((π β§ Β¬ πΌ β V) β π΅ β (Baseβπ)) |
32 | 22, 31 | pm2.61dan 811 | . 2 β’ (π β π΅ β (Baseβπ)) |
33 | resspsr.p | . . 3 β’ π = (π βΎs π΅) | |
34 | 33, 20 | ressbas2 17181 | . 2 β’ (π΅ β (Baseβπ) β π΅ = (Baseβπ)) |
35 | 32, 34 | syl 17 | 1 β’ (π β π΅ = (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β wss 3948 β c0 4322 β‘ccnv 5675 β cima 5679 βcfv 6543 (class class class)co 7408 βm cmap 8819 Fincfn 8938 βcn 12211 β0cn0 12471 Basecbs 17143 βΎs cress 17172 SubRingcsubrg 20314 mPwSer cmps 21456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-tset 17215 df-subg 19002 df-ring 20057 df-subrg 20316 df-psr 21461 |
This theorem is referenced by: resspsrvsca 21537 subrgpsr 21538 |
Copyright terms: Public domain | W3C validator |