Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resspsrbas | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
resspsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
resspsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
resspsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
resspsr.b | ⊢ 𝐵 = (Base‘𝑈) |
resspsr.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
resspsr.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
Ref | Expression |
---|---|
resspsrbas | ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
2 | resspsr.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | resspsr.h | . . . . . . . . 9 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
4 | 3 | subrgbas 19948 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
6 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 6 | subrgss 19940 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
9 | 5, 8 | eqsstrrd 3956 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅)) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝐻) ⊆ (Base‘𝑅)) |
11 | mapss 8635 | . . . . 5 ⊢ (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) | |
12 | 1, 10, 11 | sylancr 586 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
13 | resspsr.u | . . . . 5 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
14 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
15 | eqid 2738 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
16 | resspsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐼 ∈ V) | |
18 | 13, 14, 15, 16, 17 | psrbas 21057 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
19 | resspsr.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
20 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
21 | 19, 6, 15, 20, 17 | psrbas 21057 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
22 | 12, 18, 21 | 3sstr4d 3964 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆)) |
23 | reldmpsr 21027 | . . . . . . . . 9 ⊢ Rel dom mPwSer | |
24 | 23 | ovprc1 7294 | . . . . . . . 8 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPwSer 𝐻) = ∅) |
25 | 13, 24 | eqtrid 2790 | . . . . . . 7 ⊢ (¬ 𝐼 ∈ V → 𝑈 = ∅) |
26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝑈 = ∅) |
27 | 26 | fveq2d 6760 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘𝑈) = (Base‘∅)) |
28 | base0 16845 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
29 | 27, 16, 28 | 3eqtr4g 2804 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 = ∅) |
30 | 0ss 4327 | . . . 4 ⊢ ∅ ⊆ (Base‘𝑆) | |
31 | 29, 30 | eqsstrdi 3971 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆)) |
32 | 22, 31 | pm2.61dan 809 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
33 | resspsr.p | . . 3 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
34 | 33, 20 | ressbas2 16875 | . 2 ⊢ (𝐵 ⊆ (Base‘𝑆) → 𝐵 = (Base‘𝑃)) |
35 | 32, 34 | syl 17 | 1 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 ℕcn 11903 ℕ0cn0 12163 Basecbs 16840 ↾s cress 16867 SubRingcsubrg 19935 mPwSer cmps 21017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-subg 18667 df-ring 19700 df-subrg 19937 df-psr 21022 |
This theorem is referenced by: resspsrvsca 21097 subrgpsr 21098 |
Copyright terms: Public domain | W3C validator |