| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resspsrbas | Structured version Visualization version GIF version | ||
| Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| resspsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| resspsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| resspsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
| resspsr.b | ⊢ 𝐵 = (Base‘𝑈) |
| resspsr.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| resspsr.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| Ref | Expression |
|---|---|
| resspsrbas | ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
| 2 | resspsr.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 3 | resspsr.h | . . . . . . . . 9 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 4 | 3 | subrgbas 20541 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
| 6 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | 6 | subrgss 20532 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
| 8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
| 9 | 5, 8 | eqsstrrd 3994 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝐻) ⊆ (Base‘𝑅)) |
| 11 | mapss 8903 | . . . . 5 ⊢ (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) | |
| 12 | 1, 10, 11 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 13 | resspsr.u | . . . . 5 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
| 14 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 15 | eqid 2735 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 16 | resspsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐼 ∈ V) | |
| 18 | 13, 14, 15, 16, 17 | psrbas 21893 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 19 | resspsr.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 20 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 21 | 19, 6, 15, 20, 17 | psrbas 21893 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 22 | 12, 18, 21 | 3sstr4d 4014 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆)) |
| 23 | reldmpsr 21874 | . . . . . . . . 9 ⊢ Rel dom mPwSer | |
| 24 | 23 | ovprc1 7444 | . . . . . . . 8 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPwSer 𝐻) = ∅) |
| 25 | 13, 24 | eqtrid 2782 | . . . . . . 7 ⊢ (¬ 𝐼 ∈ V → 𝑈 = ∅) |
| 26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝑈 = ∅) |
| 27 | 26 | fveq2d 6880 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘𝑈) = (Base‘∅)) |
| 28 | base0 17233 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
| 29 | 27, 16, 28 | 3eqtr4g 2795 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 = ∅) |
| 30 | 0ss 4375 | . . . 4 ⊢ ∅ ⊆ (Base‘𝑆) | |
| 31 | 29, 30 | eqsstrdi 4003 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆)) |
| 32 | 22, 31 | pm2.61dan 812 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 33 | resspsr.p | . . 3 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 34 | 33, 20 | ressbas2 17259 | . 2 ⊢ (𝐵 ⊆ (Base‘𝑆) → 𝐵 = (Base‘𝑃)) |
| 35 | 32, 34 | syl 17 | 1 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ◡ccnv 5653 “ cima 5657 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Fincfn 8959 ℕcn 12240 ℕ0cn0 12501 Basecbs 17228 ↾s cress 17251 SubRingcsubrg 20529 mPwSer cmps 21864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-tset 17290 df-subg 19106 df-ring 20195 df-subrg 20530 df-psr 21869 |
| This theorem is referenced by: resspsrvsca 21937 subrgpsr 21938 |
| Copyright terms: Public domain | W3C validator |