MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrbas Structured version   Visualization version   GIF version

Theorem resspsrbas 21859
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrbas (𝜑𝐵 = (Base‘𝑃))

Proof of Theorem resspsrbas
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fvex 6853 . . . . 5 (Base‘𝑅) ∈ V
2 resspsr.2 . . . . . . . 8 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 resspsr.h . . . . . . . . 9 𝐻 = (𝑅s 𝑇)
43subrgbas 20466 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
52, 4syl 17 . . . . . . 7 (𝜑𝑇 = (Base‘𝐻))
6 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
76subrgss 20457 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
82, 7syl 17 . . . . . . 7 (𝜑𝑇 ⊆ (Base‘𝑅))
95, 8eqsstrrd 3979 . . . . . 6 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
109adantr 480 . . . . 5 ((𝜑𝐼 ∈ V) → (Base‘𝐻) ⊆ (Base‘𝑅))
11 mapss 8839 . . . . 5 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
121, 10, 11sylancr 587 . . . 4 ((𝜑𝐼 ∈ V) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
13 resspsr.u . . . . 5 𝑈 = (𝐼 mPwSer 𝐻)
14 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
15 eqid 2729 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 resspsr.b . . . . 5 𝐵 = (Base‘𝑈)
17 simpr 484 . . . . 5 ((𝜑𝐼 ∈ V) → 𝐼 ∈ V)
1813, 14, 15, 16, 17psrbas 21818 . . . 4 ((𝜑𝐼 ∈ V) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
19 resspsr.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
20 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
2119, 6, 15, 20, 17psrbas 21818 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2212, 18, 213sstr4d 3999 . . 3 ((𝜑𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆))
23 reldmpsr 21799 . . . . . . . . 9 Rel dom mPwSer
2423ovprc1 7408 . . . . . . . 8 𝐼 ∈ V → (𝐼 mPwSer 𝐻) = ∅)
2513, 24eqtrid 2776 . . . . . . 7 𝐼 ∈ V → 𝑈 = ∅)
2625adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝑈 = ∅)
2726fveq2d 6844 . . . . 5 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘𝑈) = (Base‘∅))
28 base0 17160 . . . . 5 ∅ = (Base‘∅)
2927, 16, 283eqtr4g 2789 . . . 4 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 = ∅)
30 0ss 4359 . . . 4 ∅ ⊆ (Base‘𝑆)
3129, 30eqsstrdi 3988 . . 3 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆))
3222, 31pm2.61dan 812 . 2 (𝜑𝐵 ⊆ (Base‘𝑆))
33 resspsr.p . . 3 𝑃 = (𝑆s 𝐵)
3433, 20ressbas2 17184 . 2 (𝐵 ⊆ (Base‘𝑆) → 𝐵 = (Base‘𝑃))
3532, 34syl 17 1 (𝜑𝐵 = (Base‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  wss 3911  c0 4292  ccnv 5630  cima 5634  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  cn 12162  0cn0 12418  Basecbs 17155  s cress 17176  SubRingcsubrg 20454   mPwSer cmps 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-tset 17215  df-subg 19031  df-ring 20120  df-subrg 20455  df-psr 21794
This theorem is referenced by:  resspsrvsca  21862  subrgpsr  21863
  Copyright terms: Public domain W3C validator