MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrbas Structured version   Visualization version   GIF version

Theorem resspsrbas 21883
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrbas (𝜑𝐵 = (Base‘𝑃))

Proof of Theorem resspsrbas
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fvex 6871 . . . . 5 (Base‘𝑅) ∈ V
2 resspsr.2 . . . . . . . 8 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 resspsr.h . . . . . . . . 9 𝐻 = (𝑅s 𝑇)
43subrgbas 20490 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
52, 4syl 17 . . . . . . 7 (𝜑𝑇 = (Base‘𝐻))
6 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
76subrgss 20481 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
82, 7syl 17 . . . . . . 7 (𝜑𝑇 ⊆ (Base‘𝑅))
95, 8eqsstrrd 3982 . . . . . 6 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
109adantr 480 . . . . 5 ((𝜑𝐼 ∈ V) → (Base‘𝐻) ⊆ (Base‘𝑅))
11 mapss 8862 . . . . 5 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
121, 10, 11sylancr 587 . . . 4 ((𝜑𝐼 ∈ V) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
13 resspsr.u . . . . 5 𝑈 = (𝐼 mPwSer 𝐻)
14 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
15 eqid 2729 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 resspsr.b . . . . 5 𝐵 = (Base‘𝑈)
17 simpr 484 . . . . 5 ((𝜑𝐼 ∈ V) → 𝐼 ∈ V)
1813, 14, 15, 16, 17psrbas 21842 . . . 4 ((𝜑𝐼 ∈ V) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
19 resspsr.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
20 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
2119, 6, 15, 20, 17psrbas 21842 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2212, 18, 213sstr4d 4002 . . 3 ((𝜑𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆))
23 reldmpsr 21823 . . . . . . . . 9 Rel dom mPwSer
2423ovprc1 7426 . . . . . . . 8 𝐼 ∈ V → (𝐼 mPwSer 𝐻) = ∅)
2513, 24eqtrid 2776 . . . . . . 7 𝐼 ∈ V → 𝑈 = ∅)
2625adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝑈 = ∅)
2726fveq2d 6862 . . . . 5 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘𝑈) = (Base‘∅))
28 base0 17184 . . . . 5 ∅ = (Base‘∅)
2927, 16, 283eqtr4g 2789 . . . 4 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 = ∅)
30 0ss 4363 . . . 4 ∅ ⊆ (Base‘𝑆)
3129, 30eqsstrdi 3991 . . 3 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆))
3222, 31pm2.61dan 812 . 2 (𝜑𝐵 ⊆ (Base‘𝑆))
33 resspsr.p . . 3 𝑃 = (𝑆s 𝐵)
3433, 20ressbas2 17208 . 2 (𝐵 ⊆ (Base‘𝑆) → 𝐵 = (Base‘𝑃))
3532, 34syl 17 1 (𝜑𝐵 = (Base‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  c0 4296  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  s cress 17200  SubRingcsubrg 20478   mPwSer cmps 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-subg 19055  df-ring 20144  df-subrg 20479  df-psr 21818
This theorem is referenced by:  resspsrvsca  21886  subrgpsr  21887
  Copyright terms: Public domain W3C validator