![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resspsrbas | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
resspsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
resspsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
resspsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
resspsr.b | ⊢ 𝐵 = (Base‘𝑈) |
resspsr.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
resspsr.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
Ref | Expression |
---|---|
resspsrbas | ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6919 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
2 | resspsr.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | resspsr.h | . . . . . . . . 9 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
4 | 3 | subrgbas 20597 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
6 | eqid 2734 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 6 | subrgss 20588 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
9 | 5, 8 | eqsstrrd 4034 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅)) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝐻) ⊆ (Base‘𝑅)) |
11 | mapss 8927 | . . . . 5 ⊢ (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) | |
12 | 1, 10, 11 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
13 | resspsr.u | . . . . 5 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
14 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
15 | eqid 2734 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
16 | resspsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐼 ∈ V) | |
18 | 13, 14, 15, 16, 17 | psrbas 21970 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
19 | resspsr.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
20 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
21 | 19, 6, 15, 20, 17 | psrbas 21970 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
22 | 12, 18, 21 | 3sstr4d 4042 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆)) |
23 | reldmpsr 21951 | . . . . . . . . 9 ⊢ Rel dom mPwSer | |
24 | 23 | ovprc1 7469 | . . . . . . . 8 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPwSer 𝐻) = ∅) |
25 | 13, 24 | eqtrid 2786 | . . . . . . 7 ⊢ (¬ 𝐼 ∈ V → 𝑈 = ∅) |
26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝑈 = ∅) |
27 | 26 | fveq2d 6910 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘𝑈) = (Base‘∅)) |
28 | base0 17249 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
29 | 27, 16, 28 | 3eqtr4g 2799 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 = ∅) |
30 | 0ss 4405 | . . . 4 ⊢ ∅ ⊆ (Base‘𝑆) | |
31 | 29, 30 | eqsstrdi 4049 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆)) |
32 | 22, 31 | pm2.61dan 813 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
33 | resspsr.p | . . 3 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
34 | 33, 20 | ressbas2 17282 | . 2 ⊢ (𝐵 ⊆ (Base‘𝑆) → 𝐵 = (Base‘𝑃)) |
35 | 32, 34 | syl 17 | 1 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {crab 3432 Vcvv 3477 ⊆ wss 3962 ∅c0 4338 ◡ccnv 5687 “ cima 5691 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 Fincfn 8983 ℕcn 12263 ℕ0cn0 12523 Basecbs 17244 ↾s cress 17273 SubRingcsubrg 20585 mPwSer cmps 21941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-subg 19153 df-ring 20252 df-subrg 20586 df-psr 21946 |
This theorem is referenced by: resspsrvsca 22014 subrgpsr 22015 |
Copyright terms: Public domain | W3C validator |