MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psropprmul Structured version   Visualization version   GIF version

Theorem psropprmul 22229
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
psropprmul.y 𝑌 = (𝐼 mPwSer 𝑅)
psropprmul.s 𝑆 = (oppr𝑅)
psropprmul.z 𝑍 = (𝐼 mPwSer 𝑆)
psropprmul.t · = (.r𝑌)
psropprmul.u = (.r𝑍)
psropprmul.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
psropprmul ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))

Proof of Theorem psropprmul
Dummy variables 𝑏 𝑐 𝑒 𝑓 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2726 . . . . 5 (0g𝑅) = (0g𝑅)
3 ringcmn 20263 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
433ad2ant1 1130 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ CMnd)
54adantr 479 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
6 ovex 7459 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
76rabex 5341 . . . . . . 7 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
87rabex 5341 . . . . . 6 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V
98a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V)
10 simpll1 1209 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑅 ∈ Ring)
11 psropprmul.y . . . . . . . . . 10 𝑌 = (𝐼 mPwSer 𝑅)
12 eqid 2726 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
13 psropprmul.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
14 simp3 1135 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
1511, 1, 12, 13, 14psrelbas 21945 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1615adantr 479 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
17 elrabi 3675 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑒 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
18 ffvelcdm 7097 . . . . . . . 8 ((𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅) ∧ 𝑒 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐺𝑒) ∈ (Base‘𝑅))
1916, 17, 18syl2an 594 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐺𝑒) ∈ (Base‘𝑅))
20 simp2 1134 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
2111, 1, 12, 13, 20psrelbas 21945 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2221ad2antrr 724 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ssrab2 4076 . . . . . . . . 9 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ⊆ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
24 eqid 2726 . . . . . . . . . . 11 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} = {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
2512, 24psrbagconcl 21933 . . . . . . . . . 10 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
2625adantll 712 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
2723, 26sselid 3977 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
2822, 27ffvelcdmd 7101 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐹‘(𝑏f𝑒)) ∈ (Base‘𝑅))
29 eqid 2726 . . . . . . . 8 (.r𝑅) = (.r𝑅)
301, 29ringcl 20235 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐺𝑒) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑏f𝑒)) ∈ (Base‘𝑅)) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) ∈ (Base‘𝑅))
3110, 19, 28, 30syl3anc 1368 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) ∈ (Base‘𝑅))
3231fmpttd 7131 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}⟶(Base‘𝑅))
33 mptexg 7240 . . . . . . 7 ({𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V)
348, 33mp1i 13 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V)
35 funmpt 6599 . . . . . . 7 Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
3635a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))
37 fvexd 6918 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
3812psrbaglefi 21931 . . . . . . 7 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin)
3938adantl 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin)
40 suppssdm 8193 . . . . . . . 8 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
41 eqid 2726 . . . . . . . . 9 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
4241dmmptss 6254 . . . . . . . 8 dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
4340, 42sstri 3989 . . . . . . 7 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
4443a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
45 suppssfifsupp 9425 . . . . . 6 ((((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V ∧ Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin ∧ ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) finSupp (0g𝑅))
4634, 36, 37, 39, 44, 45syl32anc 1375 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) finSupp (0g𝑅))
4712, 24psrbagconf1o 21936 . . . . . 6 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
4847adantl 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
491, 2, 5, 9, 32, 46, 48gsumf1o 19916 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))) = (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))))
5012, 24psrbagconcl 21933 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
5150adantll 712 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
52 eqidd 2727 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))
53 eqidd 2727 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))
54 fveq2 6903 . . . . . . . 8 (𝑒 = (𝑏f𝑐) → (𝐺𝑒) = (𝐺‘(𝑏f𝑐)))
55 oveq2 7434 . . . . . . . . 9 (𝑒 = (𝑏f𝑐) → (𝑏f𝑒) = (𝑏f − (𝑏f𝑐)))
5655fveq2d 6907 . . . . . . . 8 (𝑒 = (𝑏f𝑐) → (𝐹‘(𝑏f𝑒)) = (𝐹‘(𝑏f − (𝑏f𝑐))))
5754, 56oveq12d 7444 . . . . . . 7 (𝑒 = (𝑏f𝑐) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))))
5851, 52, 53, 57fmptco 7145 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐))))))
59 reldmpsr 21913 . . . . . . . . . . . . . 14 Rel dom mPwSer
6011, 13, 59strov2rcl 17223 . . . . . . . . . . . . 13 (𝐺𝐵𝐼 ∈ V)
61603ad2ant3 1132 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐼 ∈ V)
6261ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝐼 ∈ V)
6312psrbagf 21917 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0)
6463adantl 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑏:𝐼⟶ℕ0)
6564adantr 479 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑏:𝐼⟶ℕ0)
66 elrabi 3675 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
6712psrbagf 21917 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → 𝑐:𝐼⟶ℕ0)
6866, 67syl 17 . . . . . . . . . . . 12 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑐:𝐼⟶ℕ0)
6968adantl 480 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑐:𝐼⟶ℕ0)
70 nn0cn 12536 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ0𝑒 ∈ ℂ)
71 nn0cn 12536 . . . . . . . . . . . . 13 (𝑓 ∈ ℕ0𝑓 ∈ ℂ)
72 nncan 11541 . . . . . . . . . . . . 13 ((𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ) → (𝑒 − (𝑒𝑓)) = 𝑓)
7370, 71, 72syl2an 594 . . . . . . . . . . . 12 ((𝑒 ∈ ℕ0𝑓 ∈ ℕ0) → (𝑒 − (𝑒𝑓)) = 𝑓)
7473adantl 480 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) ∧ (𝑒 ∈ ℕ0𝑓 ∈ ℕ0)) → (𝑒 − (𝑒𝑓)) = 𝑓)
7562, 65, 69, 74caonncan 7734 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f − (𝑏f𝑐)) = 𝑐)
7675fveq2d 6907 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐹‘(𝑏f − (𝑏f𝑐))) = (𝐹𝑐))
7776oveq2d 7442 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹𝑐)))
78 psropprmul.s . . . . . . . . 9 𝑆 = (oppr𝑅)
79 eqid 2726 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
801, 29, 78, 79opprmul 20321 . . . . . . . 8 ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹𝑐))
8177, 80eqtr4di 2784 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))) = ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))
8281mpteq2dva 5255 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐))))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))
8358, 82eqtrd 2766 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))
8483oveq2d 7442 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
858mptex 7242 . . . . . . . 8 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))) ∈ V
8685a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))) ∈ V)
87 id 22 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
8878fvexi 6917 . . . . . . . 8 𝑆 ∈ V
8988a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑆 ∈ V)
9078, 1opprbas 20325 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑆)
9190a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑆))
92 eqid 2726 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
9378, 92oppradd 20327 . . . . . . . 8 (+g𝑅) = (+g𝑆)
9493a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (+g𝑅) = (+g𝑆))
9586, 87, 89, 91, 94gsumpropd 18673 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
96953ad2ant1 1130 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9796adantr 479 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9849, 84, 973eqtrd 2770 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9998mpteq2dva 5255 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))))
100 psropprmul.t . . 3 · = (.r𝑌)
10111, 13, 29, 100, 12, 14, 20psrmulfval 21954 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐺 · 𝐹) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))))
102 psropprmul.z . . 3 𝑍 = (𝐼 mPwSer 𝑆)
103 eqid 2726 . . 3 (Base‘𝑍) = (Base‘𝑍)
104 psropprmul.u . . 3 = (.r𝑍)
10590a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘𝑅) = (Base‘𝑆))
106105psrbaspropd 22226 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
10711fveq2i 6906 . . . . . 6 (Base‘𝑌) = (Base‘(𝐼 mPwSer 𝑅))
10813, 107eqtri 2754 . . . . 5 𝐵 = (Base‘(𝐼 mPwSer 𝑅))
109102fveq2i 6906 . . . . 5 (Base‘𝑍) = (Base‘(𝐼 mPwSer 𝑆))
110106, 108, 1093eqtr4g 2791 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐵 = (Base‘𝑍))
11120, 110eleqtrd 2828 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹 ∈ (Base‘𝑍))
11214, 110eleqtrd 2828 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺 ∈ (Base‘𝑍))
113102, 103, 79, 104, 12, 111, 112psrmulfval 21954 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))))
11499, 101, 1133eqtr4rd 2777 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  wss 3947   class class class wbr 5155  cmpt 5238  ccnv 5683  dom cdm 5684  cima 5687  ccom 5688  Fun wfun 6550  wf 6552  1-1-ontowf1o 6555  cfv 6556  (class class class)co 7426  f cof 7690  r cofr 7691   supp csupp 8176  m cmap 8857  Fincfn 8976   finSupp cfsupp 9407  cc 11158  cle 11301  cmin 11496  cn 12266  0cn0 12526  Basecbs 17215  +gcplusg 17268  .rcmulr 17269  0gc0g 17456   Σg cgsu 17457  CMndccmn 19780  Ringcrg 20218  opprcoppr 20317   mPwSer cmps 21903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-ofr 7693  df-om 7879  df-1st 8005  df-2nd 8006  df-supp 8177  df-tpos 8243  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-map 8859  df-pm 8860  df-ixp 8929  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-fsupp 9408  df-oi 9555  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12613  df-uz 12877  df-fz 13541  df-fzo 13684  df-seq 14024  df-hash 14350  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-mulr 17282  df-sca 17284  df-vsca 17285  df-tset 17287  df-0g 17458  df-gsum 17459  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-grp 18933  df-minusg 18934  df-cntz 19313  df-cmn 19782  df-abl 19783  df-mgp 20120  df-ur 20167  df-ring 20220  df-oppr 20318  df-psr 21908
This theorem is referenced by:  ply1opprmul  22230
  Copyright terms: Public domain W3C validator