MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psropprmul Structured version   Visualization version   GIF version

Theorem psropprmul 22151
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
psropprmul.y 𝑌 = (𝐼 mPwSer 𝑅)
psropprmul.s 𝑆 = (oppr𝑅)
psropprmul.z 𝑍 = (𝐼 mPwSer 𝑆)
psropprmul.t · = (.r𝑌)
psropprmul.u = (.r𝑍)
psropprmul.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
psropprmul ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))

Proof of Theorem psropprmul
Dummy variables 𝑏 𝑐 𝑒 𝑓 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2733 . . . . 5 (0g𝑅) = (0g𝑅)
3 ringcmn 20202 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
433ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ CMnd)
54adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
6 ovex 7385 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
76rabex 5279 . . . . . . 7 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
87rabex 5279 . . . . . 6 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V
98a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V)
10 simpll1 1213 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑅 ∈ Ring)
11 psropprmul.y . . . . . . . . . 10 𝑌 = (𝐼 mPwSer 𝑅)
12 eqid 2733 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
13 psropprmul.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
14 simp3 1138 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
1511, 1, 12, 13, 14psrelbas 21873 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1615adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
17 elrabi 3639 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑒 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
18 ffvelcdm 7020 . . . . . . . 8 ((𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅) ∧ 𝑒 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐺𝑒) ∈ (Base‘𝑅))
1916, 17, 18syl2an 596 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐺𝑒) ∈ (Base‘𝑅))
20 simp2 1137 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
2111, 1, 12, 13, 20psrelbas 21873 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2221ad2antrr 726 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ssrab2 4029 . . . . . . . . 9 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ⊆ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
24 eqid 2733 . . . . . . . . . . 11 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} = {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
2512, 24psrbagconcl 21866 . . . . . . . . . 10 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
2625adantll 714 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
2723, 26sselid 3928 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
2822, 27ffvelcdmd 7024 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐹‘(𝑏f𝑒)) ∈ (Base‘𝑅))
29 eqid 2733 . . . . . . . 8 (.r𝑅) = (.r𝑅)
301, 29ringcl 20170 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐺𝑒) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑏f𝑒)) ∈ (Base‘𝑅)) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) ∈ (Base‘𝑅))
3110, 19, 28, 30syl3anc 1373 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) ∈ (Base‘𝑅))
3231fmpttd 7054 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}⟶(Base‘𝑅))
33 mptexg 7161 . . . . . . 7 ({𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V)
348, 33mp1i 13 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V)
35 funmpt 6524 . . . . . . 7 Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
3635a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))
37 fvexd 6843 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
3812psrbaglefi 21865 . . . . . . 7 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin)
3938adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin)
40 suppssdm 8113 . . . . . . . 8 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
41 eqid 2733 . . . . . . . . 9 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
4241dmmptss 6193 . . . . . . . 8 dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
4340, 42sstri 3940 . . . . . . 7 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
4443a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
45 suppssfifsupp 9271 . . . . . 6 ((((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V ∧ Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin ∧ ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) finSupp (0g𝑅))
4634, 36, 37, 39, 44, 45syl32anc 1380 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) finSupp (0g𝑅))
4712, 24psrbagconf1o 21868 . . . . . 6 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
4847adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
491, 2, 5, 9, 32, 46, 48gsumf1o 19830 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))) = (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))))
5012, 24psrbagconcl 21866 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
5150adantll 714 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
52 eqidd 2734 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))
53 eqidd 2734 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))
54 fveq2 6828 . . . . . . . 8 (𝑒 = (𝑏f𝑐) → (𝐺𝑒) = (𝐺‘(𝑏f𝑐)))
55 oveq2 7360 . . . . . . . . 9 (𝑒 = (𝑏f𝑐) → (𝑏f𝑒) = (𝑏f − (𝑏f𝑐)))
5655fveq2d 6832 . . . . . . . 8 (𝑒 = (𝑏f𝑐) → (𝐹‘(𝑏f𝑒)) = (𝐹‘(𝑏f − (𝑏f𝑐))))
5754, 56oveq12d 7370 . . . . . . 7 (𝑒 = (𝑏f𝑐) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))))
5851, 52, 53, 57fmptco 7068 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐))))))
59 reldmpsr 21853 . . . . . . . . . . . . . 14 Rel dom mPwSer
6011, 13, 59strov2rcl 17130 . . . . . . . . . . . . 13 (𝐺𝐵𝐼 ∈ V)
61603ad2ant3 1135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐼 ∈ V)
6261ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝐼 ∈ V)
6312psrbagf 21857 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0)
6463adantl 481 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑏:𝐼⟶ℕ0)
6564adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑏:𝐼⟶ℕ0)
66 elrabi 3639 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
6712psrbagf 21857 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → 𝑐:𝐼⟶ℕ0)
6866, 67syl 17 . . . . . . . . . . . 12 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑐:𝐼⟶ℕ0)
6968adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑐:𝐼⟶ℕ0)
70 nn0cn 12398 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ0𝑒 ∈ ℂ)
71 nn0cn 12398 . . . . . . . . . . . . 13 (𝑓 ∈ ℕ0𝑓 ∈ ℂ)
72 nncan 11397 . . . . . . . . . . . . 13 ((𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ) → (𝑒 − (𝑒𝑓)) = 𝑓)
7370, 71, 72syl2an 596 . . . . . . . . . . . 12 ((𝑒 ∈ ℕ0𝑓 ∈ ℕ0) → (𝑒 − (𝑒𝑓)) = 𝑓)
7473adantl 481 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) ∧ (𝑒 ∈ ℕ0𝑓 ∈ ℕ0)) → (𝑒 − (𝑒𝑓)) = 𝑓)
7562, 65, 69, 74caonncan 7660 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f − (𝑏f𝑐)) = 𝑐)
7675fveq2d 6832 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐹‘(𝑏f − (𝑏f𝑐))) = (𝐹𝑐))
7776oveq2d 7368 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹𝑐)))
78 psropprmul.s . . . . . . . . 9 𝑆 = (oppr𝑅)
79 eqid 2733 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
801, 29, 78, 79opprmul 20260 . . . . . . . 8 ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹𝑐))
8177, 80eqtr4di 2786 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))) = ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))
8281mpteq2dva 5186 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐))))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))
8358, 82eqtrd 2768 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))
8483oveq2d 7368 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
858mptex 7163 . . . . . . . 8 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))) ∈ V
8685a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))) ∈ V)
87 id 22 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
8878fvexi 6842 . . . . . . . 8 𝑆 ∈ V
8988a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑆 ∈ V)
9078, 1opprbas 20263 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑆)
9190a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑆))
92 eqid 2733 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
9378, 92oppradd 20264 . . . . . . . 8 (+g𝑅) = (+g𝑆)
9493a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (+g𝑅) = (+g𝑆))
9586, 87, 89, 91, 94gsumpropd 18588 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
96953ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9796adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9849, 84, 973eqtrd 2772 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9998mpteq2dva 5186 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))))
100 psropprmul.t . . 3 · = (.r𝑌)
10111, 13, 29, 100, 12, 14, 20psrmulfval 21882 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐺 · 𝐹) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))))
102 psropprmul.z . . 3 𝑍 = (𝐼 mPwSer 𝑆)
103 eqid 2733 . . 3 (Base‘𝑍) = (Base‘𝑍)
104 psropprmul.u . . 3 = (.r𝑍)
10590a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘𝑅) = (Base‘𝑆))
106105psrbaspropd 22148 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
10711fveq2i 6831 . . . . . 6 (Base‘𝑌) = (Base‘(𝐼 mPwSer 𝑅))
10813, 107eqtri 2756 . . . . 5 𝐵 = (Base‘(𝐼 mPwSer 𝑅))
109102fveq2i 6831 . . . . 5 (Base‘𝑍) = (Base‘(𝐼 mPwSer 𝑆))
110106, 108, 1093eqtr4g 2793 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐵 = (Base‘𝑍))
11120, 110eleqtrd 2835 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹 ∈ (Base‘𝑍))
11214, 110eleqtrd 2835 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺 ∈ (Base‘𝑍))
113102, 103, 79, 104, 12, 111, 112psrmulfval 21882 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))))
11499, 101, 1133eqtr4rd 2779 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  wss 3898   class class class wbr 5093  cmpt 5174  ccnv 5618  dom cdm 5619  cima 5622  ccom 5623  Fun wfun 6480  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  f cof 7614  r cofr 7615   supp csupp 8096  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252  cc 11011  cle 11154  cmin 11351  cn 12132  0cn0 12388  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  CMndccmn 19694  Ringcrg 20153  opprcoppr 20256   mPwSer cmps 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-tset 17182  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-ur 20102  df-ring 20155  df-oppr 20257  df-psr 21848
This theorem is referenced by:  ply1opprmul  22152
  Copyright terms: Public domain W3C validator