MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psropprmul Structured version   Visualization version   GIF version

Theorem psropprmul 22171
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
psropprmul.y 𝑌 = (𝐼 mPwSer 𝑅)
psropprmul.s 𝑆 = (oppr𝑅)
psropprmul.z 𝑍 = (𝐼 mPwSer 𝑆)
psropprmul.t · = (.r𝑌)
psropprmul.u = (.r𝑍)
psropprmul.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
psropprmul ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))

Proof of Theorem psropprmul
Dummy variables 𝑏 𝑐 𝑒 𝑓 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2735 . . . . 5 (0g𝑅) = (0g𝑅)
3 ringcmn 20240 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
433ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ CMnd)
54adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
6 ovex 7436 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
76rabex 5309 . . . . . . 7 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
87rabex 5309 . . . . . 6 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V
98a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V)
10 simpll1 1213 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑅 ∈ Ring)
11 psropprmul.y . . . . . . . . . 10 𝑌 = (𝐼 mPwSer 𝑅)
12 eqid 2735 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
13 psropprmul.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
14 simp3 1138 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
1511, 1, 12, 13, 14psrelbas 21892 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1615adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
17 elrabi 3666 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑒 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
18 ffvelcdm 7070 . . . . . . . 8 ((𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅) ∧ 𝑒 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐺𝑒) ∈ (Base‘𝑅))
1916, 17, 18syl2an 596 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐺𝑒) ∈ (Base‘𝑅))
20 simp2 1137 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
2111, 1, 12, 13, 20psrelbas 21892 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2221ad2antrr 726 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ssrab2 4055 . . . . . . . . 9 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ⊆ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
24 eqid 2735 . . . . . . . . . . 11 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} = {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
2512, 24psrbagconcl 21885 . . . . . . . . . 10 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
2625adantll 714 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
2723, 26sselid 3956 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
2822, 27ffvelcdmd 7074 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐹‘(𝑏f𝑒)) ∈ (Base‘𝑅))
29 eqid 2735 . . . . . . . 8 (.r𝑅) = (.r𝑅)
301, 29ringcl 20208 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐺𝑒) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑏f𝑒)) ∈ (Base‘𝑅)) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) ∈ (Base‘𝑅))
3110, 19, 28, 30syl3anc 1373 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) ∈ (Base‘𝑅))
3231fmpttd 7104 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}⟶(Base‘𝑅))
33 mptexg 7212 . . . . . . 7 ({𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V)
348, 33mp1i 13 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V)
35 funmpt 6573 . . . . . . 7 Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
3635a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))
37 fvexd 6890 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
3812psrbaglefi 21884 . . . . . . 7 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin)
3938adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin)
40 suppssdm 8174 . . . . . . . 8 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
41 eqid 2735 . . . . . . . . 9 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
4241dmmptss 6230 . . . . . . . 8 dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
4340, 42sstri 3968 . . . . . . 7 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
4443a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
45 suppssfifsupp 9390 . . . . . 6 ((((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V ∧ Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin ∧ ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) finSupp (0g𝑅))
4634, 36, 37, 39, 44, 45syl32anc 1380 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) finSupp (0g𝑅))
4712, 24psrbagconf1o 21887 . . . . . 6 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
4847adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
491, 2, 5, 9, 32, 46, 48gsumf1o 19895 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))) = (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))))
5012, 24psrbagconcl 21885 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
5150adantll 714 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
52 eqidd 2736 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))
53 eqidd 2736 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))
54 fveq2 6875 . . . . . . . 8 (𝑒 = (𝑏f𝑐) → (𝐺𝑒) = (𝐺‘(𝑏f𝑐)))
55 oveq2 7411 . . . . . . . . 9 (𝑒 = (𝑏f𝑐) → (𝑏f𝑒) = (𝑏f − (𝑏f𝑐)))
5655fveq2d 6879 . . . . . . . 8 (𝑒 = (𝑏f𝑐) → (𝐹‘(𝑏f𝑒)) = (𝐹‘(𝑏f − (𝑏f𝑐))))
5754, 56oveq12d 7421 . . . . . . 7 (𝑒 = (𝑏f𝑐) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))))
5851, 52, 53, 57fmptco 7118 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐))))))
59 reldmpsr 21872 . . . . . . . . . . . . . 14 Rel dom mPwSer
6011, 13, 59strov2rcl 17234 . . . . . . . . . . . . 13 (𝐺𝐵𝐼 ∈ V)
61603ad2ant3 1135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐼 ∈ V)
6261ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝐼 ∈ V)
6312psrbagf 21876 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0)
6463adantl 481 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑏:𝐼⟶ℕ0)
6564adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑏:𝐼⟶ℕ0)
66 elrabi 3666 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
6712psrbagf 21876 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → 𝑐:𝐼⟶ℕ0)
6866, 67syl 17 . . . . . . . . . . . 12 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑐:𝐼⟶ℕ0)
6968adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑐:𝐼⟶ℕ0)
70 nn0cn 12509 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ0𝑒 ∈ ℂ)
71 nn0cn 12509 . . . . . . . . . . . . 13 (𝑓 ∈ ℕ0𝑓 ∈ ℂ)
72 nncan 11510 . . . . . . . . . . . . 13 ((𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ) → (𝑒 − (𝑒𝑓)) = 𝑓)
7370, 71, 72syl2an 596 . . . . . . . . . . . 12 ((𝑒 ∈ ℕ0𝑓 ∈ ℕ0) → (𝑒 − (𝑒𝑓)) = 𝑓)
7473adantl 481 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) ∧ (𝑒 ∈ ℕ0𝑓 ∈ ℕ0)) → (𝑒 − (𝑒𝑓)) = 𝑓)
7562, 65, 69, 74caonncan 7713 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f − (𝑏f𝑐)) = 𝑐)
7675fveq2d 6879 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐹‘(𝑏f − (𝑏f𝑐))) = (𝐹𝑐))
7776oveq2d 7419 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹𝑐)))
78 psropprmul.s . . . . . . . . 9 𝑆 = (oppr𝑅)
79 eqid 2735 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
801, 29, 78, 79opprmul 20298 . . . . . . . 8 ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹𝑐))
8177, 80eqtr4di 2788 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))) = ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))
8281mpteq2dva 5214 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐))))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))
8358, 82eqtrd 2770 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))
8483oveq2d 7419 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
858mptex 7214 . . . . . . . 8 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))) ∈ V
8685a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))) ∈ V)
87 id 22 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
8878fvexi 6889 . . . . . . . 8 𝑆 ∈ V
8988a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑆 ∈ V)
9078, 1opprbas 20301 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑆)
9190a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑆))
92 eqid 2735 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
9378, 92oppradd 20302 . . . . . . . 8 (+g𝑅) = (+g𝑆)
9493a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (+g𝑅) = (+g𝑆))
9586, 87, 89, 91, 94gsumpropd 18654 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
96953ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9796adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9849, 84, 973eqtrd 2774 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9998mpteq2dva 5214 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))))
100 psropprmul.t . . 3 · = (.r𝑌)
10111, 13, 29, 100, 12, 14, 20psrmulfval 21901 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐺 · 𝐹) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))))
102 psropprmul.z . . 3 𝑍 = (𝐼 mPwSer 𝑆)
103 eqid 2735 . . 3 (Base‘𝑍) = (Base‘𝑍)
104 psropprmul.u . . 3 = (.r𝑍)
10590a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘𝑅) = (Base‘𝑆))
106105psrbaspropd 22168 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
10711fveq2i 6878 . . . . . 6 (Base‘𝑌) = (Base‘(𝐼 mPwSer 𝑅))
10813, 107eqtri 2758 . . . . 5 𝐵 = (Base‘(𝐼 mPwSer 𝑅))
109102fveq2i 6878 . . . . 5 (Base‘𝑍) = (Base‘(𝐼 mPwSer 𝑆))
110106, 108, 1093eqtr4g 2795 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐵 = (Base‘𝑍))
11120, 110eleqtrd 2836 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹 ∈ (Base‘𝑍))
11214, 110eleqtrd 2836 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺 ∈ (Base‘𝑍))
113102, 103, 79, 104, 12, 111, 112psrmulfval 21901 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))))
11499, 101, 1133eqtr4rd 2781 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657  ccom 5658  Fun wfun 6524  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  f cof 7667  r cofr 7668   supp csupp 8157  m cmap 8838  Fincfn 8957   finSupp cfsupp 9371  cc 11125  cle 11268  cmin 11464  cn 12238  0cn0 12499  Basecbs 17226  +gcplusg 17269  .rcmulr 17270  0gc0g 17451   Σg cgsu 17452  CMndccmn 19759  Ringcrg 20191  opprcoppr 20294   mPwSer cmps 21862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-tset 17288  df-0g 17453  df-gsum 17454  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-ur 20140  df-ring 20193  df-oppr 20295  df-psr 21867
This theorem is referenced by:  ply1opprmul  22172
  Copyright terms: Public domain W3C validator