Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
3 | | ringcmn 19735 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
4 | 3 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ CMnd) |
5 | 4 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd) |
6 | | ovex 7288 |
. . . . . . . 8
⊢
(ℕ0 ↑m 𝐼) ∈ V |
7 | 6 | rabex 5251 |
. . . . . . 7
⊢ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∈
V |
8 | 7 | rabex 5251 |
. . . . . 6
⊢ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ∈ V |
9 | 8 | a1i 11 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ∈ V) |
10 | | simpll1 1210 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → 𝑅 ∈ Ring) |
11 | | psropprmul.y |
. . . . . . . . . 10
⊢ 𝑌 = (𝐼 mPwSer 𝑅) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin} |
13 | | psropprmul.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑌) |
14 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
15 | 11, 1, 12, 13, 14 | psrelbas 21058 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺:{𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
16 | 15 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → 𝐺:{𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
17 | | elrabi 3611 |
. . . . . . . 8
⊢ (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} → 𝑒 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}) |
18 | | ffvelrn 6941 |
. . . . . . . 8
⊢ ((𝐺:{𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}⟶(Base‘𝑅)
∧ 𝑒 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝐺‘𝑒) ∈ (Base‘𝑅)) |
19 | 16, 17, 18 | syl2an 595 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝐺‘𝑒) ∈ (Base‘𝑅)) |
20 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) |
21 | 11, 1, 12, 13, 20 | psrelbas 21058 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹:{𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
22 | 21 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → 𝐹:{𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
23 | | ssrab2 4009 |
. . . . . . . . 9
⊢ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ⊆ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin} |
24 | | eqid 2738 |
. . . . . . . . . . 11
⊢ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} = {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} |
25 | 12, 24 | psrbagconcl 21047 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝑏 ∘f − 𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) |
26 | 25 | adantll 710 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝑏 ∘f − 𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) |
27 | 23, 26 | sselid 3915 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝑏 ∘f − 𝑒) ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}) |
28 | 22, 27 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝐹‘(𝑏 ∘f − 𝑒)) ∈ (Base‘𝑅)) |
29 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
30 | 1, 29 | ringcl 19715 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐺‘𝑒) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑏 ∘f − 𝑒)) ∈ (Base‘𝑅)) → ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒))) ∈ (Base‘𝑅)) |
31 | 10, 19, 28, 30 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒))) ∈ (Base‘𝑅)) |
32 | 31 | fmpttd 6971 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))):{𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}⟶(Base‘𝑅)) |
33 | | mptexg 7079 |
. . . . . . 7
⊢ ({𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ∈ V → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ∈ V) |
34 | 8, 33 | mp1i 13 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ∈ V) |
35 | | funmpt 6456 |
. . . . . . 7
⊢ Fun
(𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) |
36 | 35 | a1i 11 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → Fun
(𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒))))) |
37 | | fvexd 6771 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) →
(0g‘𝑅)
∈ V) |
38 | 12 | psrbaglefi 21045 |
. . . . . . 7
⊢ (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} → {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ∈ Fin) |
39 | 38 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ∈ Fin) |
40 | | suppssdm 7964 |
. . . . . . . 8
⊢ ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) supp
(0g‘𝑅))
⊆ dom (𝑒 ∈
{𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) |
41 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) |
42 | 41 | dmmptss 6133 |
. . . . . . . 8
⊢ dom
(𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} |
43 | 40, 42 | sstri 3926 |
. . . . . . 7
⊢ ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) supp
(0g‘𝑅))
⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} |
44 | 43 | a1i 11 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) supp
(0g‘𝑅))
⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) |
45 | | suppssfifsupp 9073 |
. . . . . 6
⊢ ((((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ∈ V ∧ Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ∧
(0g‘𝑅)
∈ V) ∧ ({𝑑 ∈
{𝑎 ∈
(ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ∈ Fin ∧ ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) supp
(0g‘𝑅))
⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏})) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) finSupp
(0g‘𝑅)) |
46 | 34, 36, 37, 39, 44, 45 | syl32anc 1376 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) finSupp
(0g‘𝑅)) |
47 | 12, 24 | psrbagconf1o 21049 |
. . . . . 6
⊢ (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ (𝑏 ∘f − 𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) |
48 | 47 | adantl 481 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ (𝑏 ∘f − 𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) |
49 | 1, 2, 5, 9, 32, 46, 48 | gsumf1o 19432 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒))))) = (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ (𝑏 ∘f − 𝑐))))) |
50 | 12, 24 | psrbagconcl 21047 |
. . . . . . . 8
⊢ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝑏 ∘f − 𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) |
51 | 50 | adantll 710 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝑏 ∘f − 𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) |
52 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ (𝑏 ∘f − 𝑐)) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ (𝑏 ∘f − 𝑐))) |
53 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒))))) |
54 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑒 = (𝑏 ∘f − 𝑐) → (𝐺‘𝑒) = (𝐺‘(𝑏 ∘f − 𝑐))) |
55 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑒 = (𝑏 ∘f − 𝑐) → (𝑏 ∘f − 𝑒) = (𝑏 ∘f − (𝑏 ∘f −
𝑐))) |
56 | 55 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑒 = (𝑏 ∘f − 𝑐) → (𝐹‘(𝑏 ∘f − 𝑒)) = (𝐹‘(𝑏 ∘f − (𝑏 ∘f −
𝑐)))) |
57 | 54, 56 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑒 = (𝑏 ∘f − 𝑐) → ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒))) = ((𝐺‘(𝑏 ∘f − 𝑐))(.r‘𝑅)(𝐹‘(𝑏 ∘f − (𝑏 ∘f −
𝑐))))) |
58 | 51, 52, 53, 57 | fmptco 6983 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ (𝑏 ∘f − 𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘(𝑏 ∘f − 𝑐))(.r‘𝑅)(𝐹‘(𝑏 ∘f − (𝑏 ∘f −
𝑐)))))) |
59 | | reldmpsr 21027 |
. . . . . . . . . . . . . 14
⊢ Rel dom
mPwSer |
60 | 11, 13, 59 | strov2rcl 16848 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ 𝐵 → 𝐼 ∈ V) |
61 | 60 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐼 ∈ V) |
62 | 61 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → 𝐼 ∈ V) |
63 | 12 | psrbagf 21031 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0) |
64 | 63 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → 𝑏:𝐼⟶ℕ0) |
65 | 64 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → 𝑏:𝐼⟶ℕ0) |
66 | | elrabi 3611 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} → 𝑐 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}) |
67 | 12 | psrbagf 21031 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} → 𝑐:𝐼⟶ℕ0) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} → 𝑐:𝐼⟶ℕ0) |
69 | 68 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → 𝑐:𝐼⟶ℕ0) |
70 | | nn0cn 12173 |
. . . . . . . . . . . . 13
⊢ (𝑒 ∈ ℕ0
→ 𝑒 ∈
ℂ) |
71 | | nn0cn 12173 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ ℕ0
→ 𝑓 ∈
ℂ) |
72 | | nncan 11180 |
. . . . . . . . . . . . 13
⊢ ((𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ) → (𝑒 − (𝑒 − 𝑓)) = 𝑓) |
73 | 70, 71, 72 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝑒 ∈ ℕ0
∧ 𝑓 ∈
ℕ0) → (𝑒 − (𝑒 − 𝑓)) = 𝑓) |
74 | 73 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Ring
∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) ∧ (𝑒 ∈ ℕ0 ∧ 𝑓 ∈ ℕ0))
→ (𝑒 − (𝑒 − 𝑓)) = 𝑓) |
75 | 62, 65, 69, 74 | caonncan 7552 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝑏 ∘f − (𝑏 ∘f −
𝑐)) = 𝑐) |
76 | 75 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → (𝐹‘(𝑏 ∘f − (𝑏 ∘f −
𝑐))) = (𝐹‘𝑐)) |
77 | 76 | oveq2d 7271 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → ((𝐺‘(𝑏 ∘f − 𝑐))(.r‘𝑅)(𝐹‘(𝑏 ∘f − (𝑏 ∘f −
𝑐)))) = ((𝐺‘(𝑏 ∘f − 𝑐))(.r‘𝑅)(𝐹‘𝑐))) |
78 | | psropprmul.s |
. . . . . . . . 9
⊢ 𝑆 =
(oppr‘𝑅) |
79 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑆) = (.r‘𝑆) |
80 | 1, 29, 78, 79 | opprmul 19780 |
. . . . . . . 8
⊢ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐))) = ((𝐺‘(𝑏 ∘f − 𝑐))(.r‘𝑅)(𝐹‘𝑐)) |
81 | 77, 80 | eqtr4di 2797 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏}) → ((𝐺‘(𝑏 ∘f − 𝑐))(.r‘𝑅)(𝐹‘(𝑏 ∘f − (𝑏 ∘f −
𝑐)))) = ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐)))) |
82 | 81 | mpteq2dva 5170 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘(𝑏 ∘f − 𝑐))(.r‘𝑅)(𝐹‘(𝑏 ∘f − (𝑏 ∘f −
𝑐))))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐))))) |
83 | 58, 82 | eqtrd 2778 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ (𝑏 ∘f − 𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐))))) |
84 | 83 | oveq2d 7271 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ (𝑏 ∘f − 𝑐)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐)))))) |
85 | 8 | mptex 7081 |
. . . . . . . 8
⊢ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐)))) ∈ V |
86 | 85 | a1i 11 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐)))) ∈ V) |
87 | | id 22 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) |
88 | 78 | fvexi 6770 |
. . . . . . . 8
⊢ 𝑆 ∈ V |
89 | 88 | a1i 11 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑆 ∈ V) |
90 | 78, 1 | opprbas 19784 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑆) |
91 | 90 | a1i 11 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑆)) |
92 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑅) = (+g‘𝑅) |
93 | 78, 92 | oppradd 19786 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑆) |
94 | 93 | a1i 11 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(+g‘𝑅) =
(+g‘𝑆)) |
95 | 86, 87, 89, 91, 94 | gsumpropd 18277 |
. . . . . 6
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐)))))) |
96 | 95 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐)))))) |
97 | 96 | adantr 480 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐)))))) |
98 | 49, 84, 97 | 3eqtrd 2782 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐)))))) |
99 | 98 | mpteq2dva 5170 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒)))))) = (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg
(𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐))))))) |
100 | | psropprmul.t |
. . 3
⊢ · =
(.r‘𝑌) |
101 | 11, 13, 29, 100, 12, 14, 20 | psrmulfval 21064 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐺 · 𝐹) = (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐺‘𝑒)(.r‘𝑅)(𝐹‘(𝑏 ∘f − 𝑒))))))) |
102 | | psropprmul.z |
. . 3
⊢ 𝑍 = (𝐼 mPwSer 𝑆) |
103 | | eqid 2738 |
. . 3
⊢
(Base‘𝑍) =
(Base‘𝑍) |
104 | | psropprmul.u |
. . 3
⊢ ∙ =
(.r‘𝑍) |
105 | 90 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (Base‘𝑅) = (Base‘𝑆)) |
106 | 105 | psrbaspropd 21316 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) |
107 | 11 | fveq2i 6759 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘(𝐼 mPwSer 𝑅)) |
108 | 13, 107 | eqtri 2766 |
. . . . 5
⊢ 𝐵 = (Base‘(𝐼 mPwSer 𝑅)) |
109 | 102 | fveq2i 6759 |
. . . . 5
⊢
(Base‘𝑍) =
(Base‘(𝐼 mPwSer 𝑆)) |
110 | 106, 108,
109 | 3eqtr4g 2804 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐵 = (Base‘𝑍)) |
111 | 20, 110 | eleqtrd 2841 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ (Base‘𝑍)) |
112 | 14, 110 | eleqtrd 2841 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ (Base‘𝑍)) |
113 | 102, 103,
79, 104, 12, 111, 112 | psrmulfval 21064 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg
(𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐)(.r‘𝑆)(𝐺‘(𝑏 ∘f − 𝑐))))))) |
114 | 99, 101, 113 | 3eqtr4rd 2789 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) |