MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psropprmul Structured version   Visualization version   GIF version

Theorem psropprmul 22122
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
psropprmul.y 𝑌 = (𝐼 mPwSer 𝑅)
psropprmul.s 𝑆 = (oppr𝑅)
psropprmul.z 𝑍 = (𝐼 mPwSer 𝑆)
psropprmul.t · = (.r𝑌)
psropprmul.u = (.r𝑍)
psropprmul.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
psropprmul ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))

Proof of Theorem psropprmul
Dummy variables 𝑏 𝑐 𝑒 𝑓 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
3 ringcmn 20191 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
433ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ CMnd)
54adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
6 ovex 7420 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
76rabex 5294 . . . . . . 7 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
87rabex 5294 . . . . . 6 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V
98a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V)
10 simpll1 1213 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑅 ∈ Ring)
11 psropprmul.y . . . . . . . . . 10 𝑌 = (𝐼 mPwSer 𝑅)
12 eqid 2729 . . . . . . . . . 10 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
13 psropprmul.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
14 simp3 1138 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
1511, 1, 12, 13, 14psrelbas 21843 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1615adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
17 elrabi 3654 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑒 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
18 ffvelcdm 7053 . . . . . . . 8 ((𝐺:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅) ∧ 𝑒 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐺𝑒) ∈ (Base‘𝑅))
1916, 17, 18syl2an 596 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐺𝑒) ∈ (Base‘𝑅))
20 simp2 1137 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
2111, 1, 12, 13, 20psrelbas 21843 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2221ad2antrr 726 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ssrab2 4043 . . . . . . . . 9 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ⊆ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
24 eqid 2729 . . . . . . . . . . 11 {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} = {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
2512, 24psrbagconcl 21836 . . . . . . . . . 10 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
2625adantll 714 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
2723, 26sselid 3944 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑒) ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
2822, 27ffvelcdmd 7057 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐹‘(𝑏f𝑒)) ∈ (Base‘𝑅))
29 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
301, 29ringcl 20159 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐺𝑒) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑏f𝑒)) ∈ (Base‘𝑅)) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) ∈ (Base‘𝑅))
3110, 19, 28, 30syl3anc 1373 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) ∈ (Base‘𝑅))
3231fmpttd 7087 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}⟶(Base‘𝑅))
33 mptexg 7195 . . . . . . 7 ({𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ V → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V)
348, 33mp1i 13 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V)
35 funmpt 6554 . . . . . . 7 Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
3635a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))
37 fvexd 6873 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
3812psrbaglefi 21835 . . . . . . 7 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin)
3938adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin)
40 suppssdm 8156 . . . . . . . 8 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
41 eqid 2729 . . . . . . . . 9 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))
4241dmmptss 6214 . . . . . . . 8 dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
4340, 42sstri 3956 . . . . . . 7 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}
4443a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
45 suppssfifsupp 9331 . . . . . 6 ((((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∈ V ∧ Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ∈ Fin ∧ ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) finSupp (0g𝑅))
4634, 36, 37, 39, 44, 45syl32anc 1380 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) finSupp (0g𝑅))
4712, 24psrbagconf1o 21838 . . . . . 6 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
4847adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
491, 2, 5, 9, 32, 46, 48gsumf1o 19846 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))) = (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))))
5012, 24psrbagconcl 21836 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
5150adantll 714 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏})
52 eqidd 2730 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))
53 eqidd 2730 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))
54 fveq2 6858 . . . . . . . 8 (𝑒 = (𝑏f𝑐) → (𝐺𝑒) = (𝐺‘(𝑏f𝑐)))
55 oveq2 7395 . . . . . . . . 9 (𝑒 = (𝑏f𝑐) → (𝑏f𝑒) = (𝑏f − (𝑏f𝑐)))
5655fveq2d 6862 . . . . . . . 8 (𝑒 = (𝑏f𝑐) → (𝐹‘(𝑏f𝑒)) = (𝐹‘(𝑏f − (𝑏f𝑐))))
5754, 56oveq12d 7405 . . . . . . 7 (𝑒 = (𝑏f𝑐) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))))
5851, 52, 53, 57fmptco 7101 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐))))))
59 reldmpsr 21823 . . . . . . . . . . . . . 14 Rel dom mPwSer
6011, 13, 59strov2rcl 17187 . . . . . . . . . . . . 13 (𝐺𝐵𝐼 ∈ V)
61603ad2ant3 1135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐼 ∈ V)
6261ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝐼 ∈ V)
6312psrbagf 21827 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → 𝑏:𝐼⟶ℕ0)
6463adantl 481 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑏:𝐼⟶ℕ0)
6564adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑏:𝐼⟶ℕ0)
66 elrabi 3654 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
6712psrbagf 21827 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → 𝑐:𝐼⟶ℕ0)
6866, 67syl 17 . . . . . . . . . . . 12 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} → 𝑐:𝐼⟶ℕ0)
6968adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → 𝑐:𝐼⟶ℕ0)
70 nn0cn 12452 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ0𝑒 ∈ ℂ)
71 nn0cn 12452 . . . . . . . . . . . . 13 (𝑓 ∈ ℕ0𝑓 ∈ ℂ)
72 nncan 11451 . . . . . . . . . . . . 13 ((𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ) → (𝑒 − (𝑒𝑓)) = 𝑓)
7370, 71, 72syl2an 596 . . . . . . . . . . . 12 ((𝑒 ∈ ℕ0𝑓 ∈ ℕ0) → (𝑒 − (𝑒𝑓)) = 𝑓)
7473adantl 481 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) ∧ (𝑒 ∈ ℕ0𝑓 ∈ ℕ0)) → (𝑒 − (𝑒𝑓)) = 𝑓)
7562, 65, 69, 74caonncan 7697 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝑏f − (𝑏f𝑐)) = 𝑐)
7675fveq2d 6862 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → (𝐹‘(𝑏f − (𝑏f𝑐))) = (𝐹𝑐))
7776oveq2d 7403 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹𝑐)))
78 psropprmul.s . . . . . . . . 9 𝑆 = (oppr𝑅)
79 eqid 2729 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
801, 29, 78, 79opprmul 20249 . . . . . . . 8 ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))) = ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹𝑐))
8177, 80eqtr4di 2782 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏}) → ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐)))) = ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))
8281mpteq2dva 5200 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺‘(𝑏f𝑐))(.r𝑅)(𝐹‘(𝑏f − (𝑏f𝑐))))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))
8358, 82eqtrd 2764 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))
8483oveq2d 7403 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ (𝑏f𝑐)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
858mptex 7197 . . . . . . . 8 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))) ∈ V
8685a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))) ∈ V)
87 id 22 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
8878fvexi 6872 . . . . . . . 8 𝑆 ∈ V
8988a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑆 ∈ V)
9078, 1opprbas 20252 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑆)
9190a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑆))
92 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
9378, 92oppradd 20253 . . . . . . . 8 (+g𝑅) = (+g𝑆)
9493a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (+g𝑅) = (+g𝑆))
9586, 87, 89, 91, 94gsumpropd 18605 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
96953ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9796adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9849, 84, 973eqtrd 2768 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐))))))
9998mpteq2dva 5200 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))))
100 psropprmul.t . . 3 · = (.r𝑌)
10111, 13, 29, 100, 12, 14, 20psrmulfval 21852 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐺 · 𝐹) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏f𝑒)))))))
102 psropprmul.z . . 3 𝑍 = (𝐼 mPwSer 𝑆)
103 eqid 2729 . . 3 (Base‘𝑍) = (Base‘𝑍)
104 psropprmul.u . . 3 = (.r𝑍)
10590a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘𝑅) = (Base‘𝑆))
106105psrbaspropd 22119 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
10711fveq2i 6861 . . . . . 6 (Base‘𝑌) = (Base‘(𝐼 mPwSer 𝑅))
10813, 107eqtri 2752 . . . . 5 𝐵 = (Base‘(𝐼 mPwSer 𝑅))
109102fveq2i 6861 . . . . 5 (Base‘𝑍) = (Base‘(𝐼 mPwSer 𝑆))
110106, 108, 1093eqtr4g 2789 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐵 = (Base‘𝑍))
11120, 110eleqtrd 2830 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹 ∈ (Base‘𝑍))
11214, 110eleqtrd 2830 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺 ∈ (Base‘𝑍))
113102, 103, 79, 104, 12, 111, 112psrmulfval 21852 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑r𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏f𝑐)))))))
11499, 101, 1133eqtr4rd 2775 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  cima 5641  ccom 5642  Fun wfun 6505  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  f cof 7651  r cofr 7652   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  cc 11066  cle 11209  cmin 11405  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710  Ringcrg 20142  opprcoppr 20245   mPwSer cmps 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-oppr 20246  df-psr 21818
This theorem is referenced by:  ply1opprmul  22123
  Copyright terms: Public domain W3C validator