| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrelbas | Structured version Visualization version GIF version | ||
| Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrbas.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrbas.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrbas.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrelbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psrelbas | ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrelbas.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | psrbas.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | psrbas.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | psrbas.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 5 | psrbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | reldmpsr 21889 | . . . . . . 7 ⊢ Rel dom mPwSer | |
| 7 | 6, 2, 5 | elbasov 17237 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 9 | 8 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 10 | 2, 3, 4, 5, 9 | psrbas 21908 | . . 3 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m 𝐷)) |
| 11 | 1, 10 | eleqtrd 2835 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐾 ↑m 𝐷)) |
| 12 | 3 | fvexi 6900 | . . 3 ⊢ 𝐾 ∈ V |
| 13 | ovex 7446 | . . . 4 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 14 | 4, 13 | rabex2 5321 | . . 3 ⊢ 𝐷 ∈ V |
| 15 | 12, 14 | elmap 8893 | . 2 ⊢ (𝑋 ∈ (𝐾 ↑m 𝐷) ↔ 𝑋:𝐷⟶𝐾) |
| 16 | 11, 15 | sylib 218 | 1 ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 ◡ccnv 5664 “ cima 5668 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 Fincfn 8967 ℕcn 12248 ℕ0cn0 12509 Basecbs 17230 mPwSer cmps 21879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-tset 17293 df-psr 21884 |
| This theorem is referenced by: psrelbasfun 21910 psraddcl 21913 psraddclOLD 21914 psrmulcllem 21920 psrvscaval 21925 psrvscacl 21926 psr0lid 21928 psrnegcl 21929 psrlinv 21930 psrgrpOLD 21932 psrlmod 21935 psrlidm 21937 psrridm 21938 psrass1 21939 psrdi 21940 psrdir 21941 psrass23l 21942 psrcom 21943 psrass23 21944 resspsrmul 21951 psrascl 21954 mvrcl 21967 mplelf 21973 mplsubglem 21974 mpllsslem 21975 mplsubrglem 21979 subrgasclcl 22040 psdcl 22114 psdadd 22116 psdvsca 22117 psdmul 22119 psrplusgpropd 22186 psropprmul 22188 mhmcopsr 42538 mhmcoaddpsr 42539 rhmcomulpsr 42540 |
| Copyright terms: Public domain | W3C validator |