| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrelbas | Structured version Visualization version GIF version | ||
| Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrbas.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrbas.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrbas.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrelbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psrelbas | ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrelbas.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | psrbas.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | psrbas.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | psrbas.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 5 | psrbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | reldmpsr 21879 | . . . . . . 7 ⊢ Rel dom mPwSer | |
| 7 | 6, 2, 5 | elbasov 17240 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 9 | 8 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 10 | 2, 3, 4, 5, 9 | psrbas 21898 | . . 3 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m 𝐷)) |
| 11 | 1, 10 | eleqtrd 2837 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐾 ↑m 𝐷)) |
| 12 | 3 | fvexi 6895 | . . 3 ⊢ 𝐾 ∈ V |
| 13 | ovex 7443 | . . . 4 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 14 | 4, 13 | rabex2 5316 | . . 3 ⊢ 𝐷 ∈ V |
| 15 | 12, 14 | elmap 8890 | . 2 ⊢ (𝑋 ∈ (𝐾 ↑m 𝐷) ↔ 𝑋:𝐷⟶𝐾) |
| 16 | 11, 15 | sylib 218 | 1 ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ◡ccnv 5658 “ cima 5662 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 mPwSer cmps 21869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-tset 17295 df-psr 21874 |
| This theorem is referenced by: psrelbasfun 21900 psraddcl 21903 psraddclOLD 21904 psrmulcllem 21910 psrvscaval 21915 psrvscacl 21916 psr0lid 21918 psrnegcl 21919 psrlinv 21920 psrgrpOLD 21922 psrlmod 21925 psrlidm 21927 psrridm 21928 psrass1 21929 psrdi 21930 psrdir 21931 psrass23l 21932 psrcom 21933 psrass23 21934 resspsrmul 21941 psrascl 21944 mvrcl 21957 mplelf 21963 mplsubglem 21964 mpllsslem 21965 mplsubrglem 21969 subrgasclcl 22030 psdcl 22104 psdadd 22106 psdvsca 22107 psdmul 22109 psrplusgpropd 22176 psropprmul 22178 mhmcopsr 42547 mhmcoaddpsr 42548 rhmcomulpsr 42549 |
| Copyright terms: Public domain | W3C validator |