| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrelbas | Structured version Visualization version GIF version | ||
| Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrbas.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrbas.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrbas.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrelbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psrelbas | ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrelbas.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | psrbas.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | psrbas.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | psrbas.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 5 | psrbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | reldmpsr 21849 | . . . . . . 7 ⊢ Rel dom mPwSer | |
| 7 | 6, 2, 5 | elbasov 17124 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 9 | 8 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 10 | 2, 3, 4, 5, 9 | psrbas 21868 | . . 3 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m 𝐷)) |
| 11 | 1, 10 | eleqtrd 2833 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐾 ↑m 𝐷)) |
| 12 | 3 | fvexi 6836 | . . 3 ⊢ 𝐾 ∈ V |
| 13 | ovex 7379 | . . . 4 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 14 | 4, 13 | rabex2 5279 | . . 3 ⊢ 𝐷 ∈ V |
| 15 | 12, 14 | elmap 8795 | . 2 ⊢ (𝑋 ∈ (𝐾 ↑m 𝐷) ↔ 𝑋:𝐷⟶𝐾) |
| 16 | 11, 15 | sylib 218 | 1 ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ◡ccnv 5615 “ cima 5619 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 ℕcn 12122 ℕ0cn0 12378 Basecbs 17117 mPwSer cmps 21839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-tset 17177 df-psr 21844 |
| This theorem is referenced by: psrelbasfun 21870 psraddcl 21873 psraddclOLD 21874 psrmulcllem 21880 psrvscaval 21885 psrvscacl 21886 psr0lid 21888 psrnegcl 21889 psrlinv 21890 psrgrpOLD 21892 psrlmod 21895 psrlidm 21897 psrridm 21898 psrass1 21899 psrdi 21900 psrdir 21901 psrass23l 21902 psrcom 21903 psrass23 21904 resspsrmul 21911 psrascl 21914 mvrcl 21927 mplelf 21933 mplsubglem 21934 mpllsslem 21935 mplsubrglem 21939 subrgasclcl 22000 psdcl 22074 psdadd 22076 psdvsca 22077 psdmul 22079 psrplusgpropd 22146 psropprmul 22148 mplvrpmga 33570 mplvrpmrhm 33572 mhmcopsr 42581 mhmcoaddpsr 42582 rhmcomulpsr 42583 |
| Copyright terms: Public domain | W3C validator |