| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrelbas | Structured version Visualization version GIF version | ||
| Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrbas.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrbas.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrbas.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrelbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psrelbas | ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrelbas.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | psrbas.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | psrbas.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | psrbas.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 5 | psrbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | reldmpsr 21853 | . . . . . . 7 ⊢ Rel dom mPwSer | |
| 7 | 6, 2, 5 | elbasov 17129 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 9 | 8 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 10 | 2, 3, 4, 5, 9 | psrbas 21872 | . . 3 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m 𝐷)) |
| 11 | 1, 10 | eleqtrd 2835 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐾 ↑m 𝐷)) |
| 12 | 3 | fvexi 6842 | . . 3 ⊢ 𝐾 ∈ V |
| 13 | ovex 7385 | . . . 4 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 14 | 4, 13 | rabex2 5281 | . . 3 ⊢ 𝐷 ∈ V |
| 15 | 12, 14 | elmap 8801 | . 2 ⊢ (𝑋 ∈ (𝐾 ↑m 𝐷) ↔ 𝑋:𝐷⟶𝐾) |
| 16 | 11, 15 | sylib 218 | 1 ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ◡ccnv 5618 “ cima 5622 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 ℕcn 12132 ℕ0cn0 12388 Basecbs 17122 mPwSer cmps 21843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-tset 17182 df-psr 21848 |
| This theorem is referenced by: psrelbasfun 21874 psraddcl 21877 psraddclOLD 21878 psrmulcllem 21884 psrvscaval 21889 psrvscacl 21890 psr0lid 21892 psrnegcl 21893 psrlinv 21894 psrlmod 21898 psrlidm 21900 psrridm 21901 psrass1 21902 psrdi 21903 psrdir 21904 psrass23l 21905 psrcom 21906 psrass23 21907 resspsrmul 21914 psrascl 21917 mvrcl 21930 mplelf 21936 mplsubglem 21937 mpllsslem 21938 mplsubrglem 21942 subrgasclcl 22003 psdcl 22077 psdadd 22079 psdvsca 22080 psdmul 22082 psrplusgpropd 22149 psropprmul 22151 mplvrpmga 33593 mplvrpmrhm 33595 mhmcopsr 42667 mhmcoaddpsr 42668 rhmcomulpsr 42669 |
| Copyright terms: Public domain | W3C validator |