![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psraddcl | Structured version Visualization version GIF version |
Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.) |
Ref | Expression |
---|---|
psraddcl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psraddcl.b | ⊢ 𝐵 = (Base‘𝑆) |
psraddcl.p | ⊢ + = (+g‘𝑆) |
psraddcl.r | ⊢ (𝜑 → 𝑅 ∈ Mgm) |
psraddcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
psraddcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
psraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psraddcl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Mgm) | |
2 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2726 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | 2, 3 | mgmcl 18576 | . . . . . 6 ⊢ ((𝑅 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
5 | 4 | 3expb 1117 | . . . . 5 ⊢ ((𝑅 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
6 | 1, 5 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
7 | psraddcl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
8 | eqid 2726 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
9 | psraddcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
10 | psraddcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 7, 2, 8, 9, 10 | psrelbas 21839 | . . . 4 ⊢ (𝜑 → 𝑋:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
12 | psraddcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | 7, 2, 8, 9, 12 | psrelbas 21839 | . . . 4 ⊢ (𝜑 → 𝑌:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
14 | ovex 7438 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
15 | 14 | rabex 5325 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
17 | inidm 4213 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
18 | 6, 11, 13, 16, 16, 17 | off 7685 | . . 3 ⊢ (𝜑 → (𝑋 ∘f (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
19 | fvex 6898 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
20 | 19, 15 | elmap 8867 | . . 3 ⊢ ((𝑋 ∘f (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋 ∘f (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
21 | 18, 20 | sylibr 233 | . 2 ⊢ (𝜑 → (𝑋 ∘f (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
22 | psraddcl.p | . . 3 ⊢ + = (+g‘𝑆) | |
23 | 7, 9, 3, 22, 10, 12 | psradd 21842 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘f (+g‘𝑅)𝑌)) |
24 | reldmpsr 21808 | . . . . . 6 ⊢ Rel dom mPwSer | |
25 | 24, 7, 9 | elbasov 17160 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
26 | 10, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
27 | 26 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
28 | 7, 2, 8, 9, 27 | psrbas 21838 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
29 | 21, 23, 28 | 3eltr4d 2842 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 ◡ccnv 5668 “ cima 5672 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ∘f cof 7665 ↑m cmap 8822 Fincfn 8941 ℕcn 12216 ℕ0cn0 12476 Basecbs 17153 +gcplusg 17206 Mgmcmgm 18571 mPwSer cmps 21798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-struct 17089 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-tset 17225 df-mgm 18573 df-psr 21803 |
This theorem is referenced by: psrgrpOLD 21860 psrlmod 21863 psrdi 21868 psrdir 21869 mplsubglem 21900 psdadd 22046 |
Copyright terms: Public domain | W3C validator |