MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psraddcl Structured version   Visualization version   GIF version

Theorem psraddcl 21875
Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psraddcl.s 𝑆 = (𝐼 mPwSer 𝑅)
psraddcl.b 𝐵 = (Base‘𝑆)
psraddcl.p + = (+g𝑆)
psraddcl.r (𝜑𝑅 ∈ Mgm)
psraddcl.x (𝜑𝑋𝐵)
psraddcl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
psraddcl (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem psraddcl
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psraddcl.r . . . . 5 (𝜑𝑅 ∈ Mgm)
2 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2731 . . . . . . 7 (+g𝑅) = (+g𝑅)
42, 3mgmcl 18551 . . . . . 6 ((𝑅 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
543expb 1120 . . . . 5 ((𝑅 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
61, 5sylan 580 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
7 psraddcl.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
8 eqid 2731 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 psraddcl.b . . . . 5 𝐵 = (Base‘𝑆)
10 psraddcl.x . . . . 5 (𝜑𝑋𝐵)
117, 2, 8, 9, 10psrelbas 21871 . . . 4 (𝜑𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
12 psraddcl.y . . . . 5 (𝜑𝑌𝐵)
137, 2, 8, 9, 12psrelbas 21871 . . . 4 (𝜑𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
14 ovex 7379 . . . . . 6 (ℕ0m 𝐼) ∈ V
1514rabex 5275 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1615a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
17 inidm 4174 . . . 4 ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
186, 11, 13, 16, 16, 17off 7628 . . 3 (𝜑 → (𝑋f (+g𝑅)𝑌):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
19 fvex 6835 . . . 4 (Base‘𝑅) ∈ V
2019, 15elmap 8795 . . 3 ((𝑋f (+g𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋f (+g𝑅)𝑌):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2118, 20sylibr 234 . 2 (𝜑 → (𝑋f (+g𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
22 psraddcl.p . . 3 + = (+g𝑆)
237, 9, 3, 22, 10, 12psradd 21874 . 2 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
24 reldmpsr 21851 . . . . . 6 Rel dom mPwSer
2524, 7, 9elbasov 17127 . . . . 5 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2610, 25syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2726simpld 494 . . 3 (𝜑𝐼 ∈ V)
287, 2, 8, 9, 27psrbas 21870 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2921, 23, 283eltr4d 2846 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  ccnv 5613  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Fincfn 8869  cn 12125  0cn0 12381  Basecbs 17120  +gcplusg 17161  Mgmcmgm 18546   mPwSer cmps 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-mgm 18548  df-psr 21846
This theorem is referenced by:  psrgrpOLD  21894  psrlmod  21897  psrdi  21902  psrdir  21903  mplsubglem  21936  psdadd  22078
  Copyright terms: Public domain W3C validator