![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psraddcl | Structured version Visualization version GIF version |
Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psraddcl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psraddcl.b | ⊢ 𝐵 = (Base‘𝑆) |
psraddcl.p | ⊢ + = (+g‘𝑆) |
psraddcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
psraddcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
psraddcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
psraddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psraddcl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
2 | eqid 2732 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2732 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | 2, 3 | grpcl 18823 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
5 | 4 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
6 | 1, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
7 | psraddcl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
8 | eqid 2732 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
9 | psraddcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
10 | psraddcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 7, 2, 8, 9, 10 | psrelbas 21489 | . . . 4 ⊢ (𝜑 → 𝑋:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
12 | psraddcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | 7, 2, 8, 9, 12 | psrelbas 21489 | . . . 4 ⊢ (𝜑 → 𝑌:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
14 | ovex 7438 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
15 | 14 | rabex 5331 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
17 | inidm 4217 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
18 | 6, 11, 13, 16, 16, 17 | off 7684 | . . 3 ⊢ (𝜑 → (𝑋 ∘f (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
19 | fvex 6901 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
20 | 19, 15 | elmap 8861 | . . 3 ⊢ ((𝑋 ∘f (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋 ∘f (+g‘𝑅)𝑌):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
21 | 18, 20 | sylibr 233 | . 2 ⊢ (𝜑 → (𝑋 ∘f (+g‘𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
22 | psraddcl.p | . . 3 ⊢ + = (+g‘𝑆) | |
23 | 7, 9, 3, 22, 10, 12 | psradd 21492 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘f (+g‘𝑅)𝑌)) |
24 | reldmpsr 21458 | . . . . . 6 ⊢ Rel dom mPwSer | |
25 | 24, 7, 9 | elbasov 17147 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
26 | 10, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
27 | 26 | simpld 495 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
28 | 7, 2, 8, 9, 27 | psrbas 21488 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
29 | 21, 23, 28 | 3eltr4d 2848 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ◡ccnv 5674 “ cima 5678 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ∘f cof 7664 ↑m cmap 8816 Fincfn 8935 ℕcn 12208 ℕ0cn0 12468 Basecbs 17140 +gcplusg 17193 Grpcgrp 18815 mPwSer cmps 21448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-tset 17212 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-psr 21453 |
This theorem is referenced by: psrgrpOLD 21509 psrlmod 21512 psrdi 21517 psrdir 21518 mplsubglem 21549 |
Copyright terms: Public domain | W3C validator |