Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psraddcl Structured version   Visualization version   GIF version

 Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psraddcl.s 𝑆 = (𝐼 mPwSer 𝑅)
Assertion
Ref Expression
psraddcl (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psraddcl.r . . . . 5 (𝜑𝑅 ∈ Grp)
2 eqid 2798 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2798 . . . . . . 7 (+g𝑅) = (+g𝑅)
42, 3grpcl 18123 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
543expb 1117 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
61, 5sylan 583 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
7 psraddcl.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
8 eqid 2798 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 psraddcl.b . . . . 5 𝐵 = (Base‘𝑆)
10 psraddcl.x . . . . 5 (𝜑𝑋𝐵)
117, 2, 8, 9, 10psrelbas 20653 . . . 4 (𝜑𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
12 psraddcl.y . . . . 5 (𝜑𝑌𝐵)
137, 2, 8, 9, 12psrelbas 20653 . . . 4 (𝜑𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
14 ovex 7178 . . . . . 6 (ℕ0m 𝐼) ∈ V
1514rabex 5203 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1615a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
17 inidm 4148 . . . 4 ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
186, 11, 13, 16, 16, 17off 7417 . . 3 (𝜑 → (𝑋f (+g𝑅)𝑌):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
19 fvex 6668 . . . 4 (Base‘𝑅) ∈ V
2019, 15elmap 8436 . . 3 ((𝑋f (+g𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (𝑋f (+g𝑅)𝑌):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2118, 20sylibr 237 . 2 (𝜑 → (𝑋f (+g𝑅)𝑌) ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
22 psraddcl.p . . 3 + = (+g𝑆)
237, 9, 3, 22, 10, 12psradd 20656 . 2 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
24 reldmpsr 20622 . . . . . 6 Rel dom mPwSer
2524, 7, 9elbasov 16557 . . . . 5 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2610, 25syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2726simpld 498 . . 3 (𝜑𝐼 ∈ V)
287, 2, 8, 9, 27psrbas 20652 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2921, 23, 283eltr4d 2905 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3442  ◡ccnv 5522   “ cima 5526  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145   ∘f cof 7398   ↑m cmap 8407  Fincfn 8510  ℕcn 11643  ℕ0cn0 11903  Basecbs 16495  +gcplusg 16577  Grpcgrp 18115   mPwSer cmps 20612 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-plusg 16590  df-mulr 16591  df-sca 16593  df-vsca 16594  df-tset 16596  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-grp 18118  df-psr 20617 This theorem is referenced by:  psrgrp  20672  psrlmod  20675  psrdi  20680  psrdir  20681  mplsubglem  20710
 Copyright terms: Public domain W3C validator