MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrmul Structured version   Visualization version   GIF version

Theorem resspsrmul 20655
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrmul ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))

Proof of Theorem resspsrmul
Dummy variables 𝑥 𝑘 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmpsr 20599 . . . . . . . . . 10 Rel dom mPwSer
2 resspsr.u . . . . . . . . . 10 𝑈 = (𝐼 mPwSer 𝐻)
3 resspsr.b . . . . . . . . . 10 𝐵 = (Base‘𝑈)
41, 2, 3elbasov 16537 . . . . . . . . 9 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝐻 ∈ V))
54ad2antrl 727 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐼 ∈ V ∧ 𝐻 ∈ V))
65simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐼 ∈ V)
7 eqid 2798 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 20610 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ∈ Fin)
96, 8sylan 583 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ∈ Fin)
10 resspsr.2 . . . . . . . . 9 (𝜑𝑇 ∈ (SubRing‘𝑅))
11 subrgsubg 19534 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
1210, 11syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (SubGrp‘𝑅))
13 subgsubm 18293 . . . . . . . 8 (𝑇 ∈ (SubGrp‘𝑅) → 𝑇 ∈ (SubMnd‘𝑅))
1412, 13syl 17 . . . . . . 7 (𝜑𝑇 ∈ (SubMnd‘𝑅))
1514ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑇 ∈ (SubMnd‘𝑅))
1610ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑇 ∈ (SubRing‘𝑅))
17 eqid 2798 . . . . . . . . . . . 12 (Base‘𝐻) = (Base‘𝐻)
18 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
192, 17, 7, 3, 18psrelbas 20617 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
2019adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
21 elrabi 3623 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} → 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
22 ffvelrn 6826 . . . . . . . . . 10 ((𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑋𝑥) ∈ (Base‘𝐻))
2320, 21, 22syl2an 598 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝐻))
24 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
2524subrgbas 19537 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
2616, 25syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑇 = (Base‘𝐻))
2723, 26eleqtrrd 2893 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑋𝑥) ∈ 𝑇)
28 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
292, 17, 7, 3, 28psrelbas 20617 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
3029ad2antrr 725 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
31 ssrab2 4007 . . . . . . . . . . 11 {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ⊆ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
326ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝐼 ∈ V)
33 simplr 768 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
34 simpr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
35 eqid 2798 . . . . . . . . . . . . 13 {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} = {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}
367, 35psrbagconcl 20611 . . . . . . . . . . . 12 ((𝐼 ∈ V ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
3732, 33, 34, 36syl3anc 1368 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
3831, 37sseldi 3913 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3930, 38ffvelrnd 6829 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝐻))
4039, 26eleqtrrd 2893 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ 𝑇)
41 eqid 2798 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
4241subrgmcl 19540 . . . . . . . 8 ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑋𝑥) ∈ 𝑇 ∧ (𝑌‘(𝑘f𝑥)) ∈ 𝑇) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ 𝑇)
4316, 27, 40, 42syl3anc 1368 . . . . . . 7 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ 𝑇)
4443fmpttd 6856 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))):{𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}⟶𝑇)
459, 15, 44, 24gsumsubm 17991 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))
4624, 41ressmulr 16617 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
4710, 46syl 17 . . . . . . . . 9 (𝜑 → (.r𝑅) = (.r𝐻))
4847ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (.r𝑅) = (.r𝐻))
4948oveqd 7152 . . . . . . 7 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))
5049mpteq2dva 5125 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))
5150oveq2d 7151 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))))
5245, 51eqtrd 2833 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))))
5352mpteq2dva 5125 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))))
54 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
55 eqid 2798 . . . 4 (Base‘𝑆) = (Base‘𝑆)
56 eqid 2798 . . . 4 (.r𝑆) = (.r𝑆)
57 fvex 6658 . . . . . . . 8 (Base‘𝑅) ∈ V
5810, 25syl 17 . . . . . . . . 9 (𝜑𝑇 = (Base‘𝐻))
59 eqid 2798 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
6059subrgss 19529 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
6110, 60syl 17 . . . . . . . . 9 (𝜑𝑇 ⊆ (Base‘𝑅))
6258, 61eqsstrrd 3954 . . . . . . . 8 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
63 mapss 8436 . . . . . . . 8 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6457, 62, 63sylancr 590 . . . . . . 7 (𝜑 → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6564adantr 484 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
662, 17, 7, 3, 6psrbas 20616 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6754, 59, 7, 55, 6psrbas 20616 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6865, 66, 673sstr4d 3962 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
6968, 18sseldd 3916 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑆))
7068, 28sseldd 3916 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
7154, 55, 41, 56, 7, 69, 70psrmulfval 20623 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑆)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
72 eqid 2798 . . . 4 (.r𝐻) = (.r𝐻)
73 eqid 2798 . . . 4 (.r𝑈) = (.r𝑈)
742, 3, 72, 73, 7, 18, 28psrmulfval 20623 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))))
7553, 71, 743eqtr4rd 2844 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑆)𝑌))
763fvexi 6659 . . . 4 𝐵 ∈ V
77 resspsr.p . . . . 5 𝑃 = (𝑆s 𝐵)
7877, 56ressmulr 16617 . . . 4 (𝐵 ∈ V → (.r𝑆) = (.r𝑃))
7976, 78mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (.r𝑆) = (.r𝑃))
8079oveqd 7152 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑆)𝑌) = (𝑋(.r𝑃)𝑌))
8175, 80eqtrd 2833 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  wss 3881   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  r cofr 7388  m cmap 8389  Fincfn 8492  cle 10665  cmin 10859  cn 11625  0cn0 11885  Basecbs 16475  s cress 16476  .rcmulr 16558   Σg cgsu 16706  SubMndcsubmnd 17947  SubGrpcsubg 18265  SubRingcsubrg 19524   mPwSer cmps 20589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-subg 18268  df-mgp 19233  df-ring 19292  df-subrg 19526  df-psr 20594
This theorem is referenced by:  subrgpsr  20657  ressmplmul  20698
  Copyright terms: Public domain W3C validator