MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrmul Structured version   Visualization version   GIF version

Theorem resspsrmul 21409
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅 β†Ύs 𝑇)
resspsr.u π‘ˆ = (𝐼 mPwSer 𝐻)
resspsr.b 𝐡 = (Baseβ€˜π‘ˆ)
resspsr.p 𝑃 = (𝑆 β†Ύs 𝐡)
resspsr.2 (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
Assertion
Ref Expression
resspsrmul ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (𝑋(.rβ€˜π‘ƒ)π‘Œ))

Proof of Theorem resspsrmul
Dummy variables π‘₯ π‘˜ 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . 8 {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
21psrbaglefi 21357 . . . . . . 7 (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} β†’ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ∈ Fin)
32adantl 483 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ∈ Fin)
4 resspsr.2 . . . . . . . . 9 (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
5 subrgsubg 20270 . . . . . . . . 9 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 ∈ (SubGrpβ€˜π‘…))
64, 5syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑇 ∈ (SubGrpβ€˜π‘…))
7 subgsubm 18958 . . . . . . . 8 (𝑇 ∈ (SubGrpβ€˜π‘…) β†’ 𝑇 ∈ (SubMndβ€˜π‘…))
86, 7syl 17 . . . . . . 7 (πœ‘ β†’ 𝑇 ∈ (SubMndβ€˜π‘…))
98ad2antrr 725 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ 𝑇 ∈ (SubMndβ€˜π‘…))
104ad3antrrr 729 . . . . . . . 8 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
11 resspsr.u . . . . . . . . . . . 12 π‘ˆ = (𝐼 mPwSer 𝐻)
12 eqid 2733 . . . . . . . . . . . 12 (Baseβ€˜π») = (Baseβ€˜π»)
13 resspsr.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜π‘ˆ)
14 simprl 770 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
1511, 12, 1, 13, 14psrelbas 21370 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π»))
1615adantr 482 . . . . . . . . . 10 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ 𝑋:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π»))
17 elrabi 3643 . . . . . . . . . 10 (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} β†’ π‘₯ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin})
18 ffvelcdm 7036 . . . . . . . . . 10 ((𝑋:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π») ∧ π‘₯ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (π‘‹β€˜π‘₯) ∈ (Baseβ€˜π»))
1916, 17, 18syl2an 597 . . . . . . . . 9 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘‹β€˜π‘₯) ∈ (Baseβ€˜π»))
20 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅 β†Ύs 𝑇)
2120subrgbas 20273 . . . . . . . . . 10 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 = (Baseβ€˜π»))
2210, 21syl 17 . . . . . . . . 9 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ 𝑇 = (Baseβ€˜π»))
2319, 22eleqtrrd 2837 . . . . . . . 8 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘‹β€˜π‘₯) ∈ 𝑇)
24 simprr 772 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
2511, 12, 1, 13, 24psrelbas 21370 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π»))
2625ad2antrr 725 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ π‘Œ:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π»))
27 ssrab2 4041 . . . . . . . . . . 11 {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} βŠ† {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
28 simplr 768 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin})
29 simpr 486 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜})
30 eqid 2733 . . . . . . . . . . . . 13 {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} = {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}
311, 30psrbagconcl 21359 . . . . . . . . . . . 12 ((π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘˜ ∘f βˆ’ π‘₯) ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜})
3228, 29, 31syl2anc 585 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘˜ ∘f βˆ’ π‘₯) ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜})
3327, 32sselid 3946 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘˜ ∘f βˆ’ π‘₯) ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin})
3426, 33ffvelcdmd 7040 . . . . . . . . 9 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)) ∈ (Baseβ€˜π»))
3534, 22eleqtrrd 2837 . . . . . . . 8 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)) ∈ 𝑇)
36 eqid 2733 . . . . . . . . 9 (.rβ€˜π‘…) = (.rβ€˜π‘…)
3736subrgmcl 20276 . . . . . . . 8 ((𝑇 ∈ (SubRingβ€˜π‘…) ∧ (π‘‹β€˜π‘₯) ∈ 𝑇 ∧ (π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)) ∈ 𝑇) β†’ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))) ∈ 𝑇)
3810, 23, 35, 37syl3anc 1372 . . . . . . 7 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))) ∈ 𝑇)
3938fmpttd 7067 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))):{𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}βŸΆπ‘‡)
403, 9, 39, 20gsumsubm 18653 . . . . 5 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))) = (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))))
4120, 36ressmulr 17196 . . . . . . . . . 10 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ (.rβ€˜π‘…) = (.rβ€˜π»))
424, 41syl 17 . . . . . . . . 9 (πœ‘ β†’ (.rβ€˜π‘…) = (.rβ€˜π»))
4342ad3antrrr 729 . . . . . . . 8 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (.rβ€˜π‘…) = (.rβ€˜π»))
4443oveqd 7378 . . . . . . 7 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))) = ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))
4544mpteq2dva 5209 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))) = (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))
4645oveq2d 7377 . . . . 5 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))) = (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))))
4740, 46eqtrd 2773 . . . 4 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))) = (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))))
4847mpteq2dva 5209 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))) = (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ↦ (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
49 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
50 eqid 2733 . . . 4 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
51 eqid 2733 . . . 4 (.rβ€˜π‘†) = (.rβ€˜π‘†)
52 fvex 6859 . . . . . . . 8 (Baseβ€˜π‘…) ∈ V
534, 21syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑇 = (Baseβ€˜π»))
54 eqid 2733 . . . . . . . . . . 11 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
5554subrgss 20265 . . . . . . . . . 10 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 βŠ† (Baseβ€˜π‘…))
564, 55syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑇 βŠ† (Baseβ€˜π‘…))
5753, 56eqsstrrd 3987 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜π») βŠ† (Baseβ€˜π‘…))
58 mapss 8833 . . . . . . . 8 (((Baseβ€˜π‘…) ∈ V ∧ (Baseβ€˜π») βŠ† (Baseβ€˜π‘…)) β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
5952, 57, 58sylancr 588 . . . . . . 7 (πœ‘ β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
6059adantr 482 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
61 reldmpsr 21339 . . . . . . . . . 10 Rel dom mPwSer
6261, 11, 13elbasov 17098 . . . . . . . . 9 (𝑋 ∈ 𝐡 β†’ (𝐼 ∈ V ∧ 𝐻 ∈ V))
6362ad2antrl 727 . . . . . . . 8 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝐼 ∈ V ∧ 𝐻 ∈ V))
6463simpld 496 . . . . . . 7 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐼 ∈ V)
6511, 12, 1, 13, 64psrbas 21369 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐡 = ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
6649, 54, 1, 50, 64psrbas 21369 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (Baseβ€˜π‘†) = ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
6760, 65, 663sstr4d 3995 . . . . 5 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐡 βŠ† (Baseβ€˜π‘†))
6867, 14sseldd 3949 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ (Baseβ€˜π‘†))
6967, 24sseldd 3949 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ (Baseβ€˜π‘†))
7049, 50, 36, 51, 1, 68, 69psrmulfval 21376 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘†)π‘Œ) = (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
71 eqid 2733 . . . 4 (.rβ€˜π») = (.rβ€˜π»)
72 eqid 2733 . . . 4 (.rβ€˜π‘ˆ) = (.rβ€˜π‘ˆ)
7311, 13, 71, 72, 1, 14, 24psrmulfval 21376 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ↦ (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
7448, 70, 733eqtr4rd 2784 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (𝑋(.rβ€˜π‘†)π‘Œ))
7513fvexi 6860 . . . 4 𝐡 ∈ V
76 resspsr.p . . . . 5 𝑃 = (𝑆 β†Ύs 𝐡)
7776, 51ressmulr 17196 . . . 4 (𝐡 ∈ V β†’ (.rβ€˜π‘†) = (.rβ€˜π‘ƒ))
7875, 77mp1i 13 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (.rβ€˜π‘†) = (.rβ€˜π‘ƒ))
7978oveqd 7378 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘†)π‘Œ) = (𝑋(.rβ€˜π‘ƒ)π‘Œ))
8074, 79eqtrd 2773 1 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (𝑋(.rβ€˜π‘ƒ)π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3406  Vcvv 3447   βŠ† wss 3914   class class class wbr 5109   ↦ cmpt 5192  β—‘ccnv 5636   β€œ cima 5640  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361   ∘f cof 7619   ∘r cofr 7620   ↑m cmap 8771  Fincfn 8889   ≀ cle 11198   βˆ’ cmin 11393  β„•cn 12161  β„•0cn0 12421  Basecbs 17091   β†Ύs cress 17120  .rcmulr 17142   Ξ£g cgsu 17330  SubMndcsubmnd 18608  SubGrpcsubg 18930  SubRingcsubrg 20260   mPwSer cmps 21329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-ofr 7622  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-pm 8774  df-ixp 8842  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-seq 13916  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-sca 17157  df-vsca 17158  df-tset 17160  df-0g 17331  df-gsum 17332  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-submnd 18610  df-grp 18759  df-minusg 18760  df-subg 18933  df-mgp 19905  df-ring 19974  df-subrg 20262  df-psr 21334
This theorem is referenced by:  subrgpsr  21411  ressmplmul  21454
  Copyright terms: Public domain W3C validator