Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
2 | 1 | psrbaglefi 21045 |
. . . . . . 7
⊢ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} → {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
3 | 2 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
4 | | resspsr.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
5 | | subrgsubg 19945 |
. . . . . . . . 9
⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅)) |
6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑅)) |
7 | | subgsubm 18692 |
. . . . . . . 8
⊢ (𝑇 ∈ (SubGrp‘𝑅) → 𝑇 ∈ (SubMnd‘𝑅)) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ (SubMnd‘𝑅)) |
9 | 8 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑇 ∈ (SubMnd‘𝑅)) |
10 | 4 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑇 ∈ (SubRing‘𝑅)) |
11 | | resspsr.u |
. . . . . . . . . . . 12
⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
12 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝐻) =
(Base‘𝐻) |
13 | | resspsr.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑈) |
14 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
15 | 11, 12, 1, 13, 14 | psrelbas 21058 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝐻)) |
16 | 15 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑋:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝐻)) |
17 | | elrabi 3611 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} → 𝑥 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
18 | | ffvelrn 6941 |
. . . . . . . . . 10
⊢ ((𝑋:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝐻)
∧ 𝑥 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑋‘𝑥) ∈ (Base‘𝐻)) |
19 | 16, 17, 18 | syl2an 595 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑋‘𝑥) ∈ (Base‘𝐻)) |
20 | | resspsr.h |
. . . . . . . . . . 11
⊢ 𝐻 = (𝑅 ↾s 𝑇) |
21 | 20 | subrgbas 19948 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
22 | 10, 21 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑇 = (Base‘𝐻)) |
23 | 19, 22 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑋‘𝑥) ∈ 𝑇) |
24 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
25 | 11, 12, 1, 13, 24 | psrelbas 21058 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝐻)) |
26 | 25 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝐻)) |
27 | | ssrab2 4009 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ⊆ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
28 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
29 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) |
30 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} = {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} |
31 | 1, 30 | psrbagconcl 21047 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) |
32 | 28, 29, 31 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) |
33 | 27, 32 | sselid 3915 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
34 | 26, 33 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝐻)) |
35 | 34, 22 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑌‘(𝑘 ∘f − 𝑥)) ∈ 𝑇) |
36 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
37 | 36 | subrgmcl 19951 |
. . . . . . . 8
⊢ ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑋‘𝑥) ∈ 𝑇 ∧ (𝑌‘(𝑘 ∘f − 𝑥)) ∈ 𝑇) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) ∈ 𝑇) |
38 | 10, 23, 35, 37 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) ∈ 𝑇) |
39 | 38 | fmpttd 6971 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))):{𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}⟶𝑇) |
40 | 3, 9, 39, 20 | gsumsubm 18388 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) |
41 | 20, 36 | ressmulr 16943 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝐻)) |
42 | 4, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (.r‘𝑅) = (.r‘𝐻)) |
43 | 42 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) →
(.r‘𝑅) =
(.r‘𝐻)) |
44 | 43 | oveqd 7272 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) = ((𝑋‘𝑥)(.r‘𝐻)(𝑌‘(𝑘 ∘f − 𝑥)))) |
45 | 44 | mpteq2dva 5170 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝐻)(𝑌‘(𝑘 ∘f − 𝑥))))) |
46 | 45 | oveq2d 7271 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐻 Σg
(𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝐻)(𝑌‘(𝑘 ∘f − 𝑥)))))) |
47 | 40, 46 | eqtrd 2778 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝐻)(𝑌‘(𝑘 ∘f − 𝑥)))))) |
48 | 47 | mpteq2dva 5170 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg
(𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝐻)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
49 | | resspsr.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
50 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
51 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑆) = (.r‘𝑆) |
52 | | fvex 6769 |
. . . . . . . 8
⊢
(Base‘𝑅)
∈ V |
53 | 4, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
54 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
55 | 54 | subrgss 19940 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
56 | 4, 55 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
57 | 53, 56 | eqsstrrd 3956 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅)) |
58 | | mapss 8635 |
. . . . . . . 8
⊢
(((Base‘𝑅)
∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆
((Base‘𝑅)
↑m {𝑓
∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})) |
59 | 52, 57, 58 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆
((Base‘𝑅)
↑m {𝑓
∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})) |
60 | 59 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆
((Base‘𝑅)
↑m {𝑓
∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})) |
61 | | reldmpsr 21027 |
. . . . . . . . . 10
⊢ Rel dom
mPwSer |
62 | 61, 11, 13 | elbasov 16847 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝐻 ∈ V)) |
63 | 62 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐼 ∈ V ∧ 𝐻 ∈ V)) |
64 | 63 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐼 ∈ V) |
65 | 11, 12, 1, 13, 64 | psrbas 21057 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) |
66 | 49, 54, 1, 50, 64 | psrbas 21057 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin})) |
67 | 60, 65, 66 | 3sstr4d 3964 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ (Base‘𝑆)) |
68 | 67, 14 | sseldd 3918 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝑆)) |
69 | 67, 24 | sseldd 3918 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘𝑆)) |
70 | 49, 50, 36, 51, 1, 68, 69 | psrmulfval 21064 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑆)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
71 | | eqid 2738 |
. . . 4
⊢
(.r‘𝐻) = (.r‘𝐻) |
72 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑈) = (.r‘𝑈) |
73 | 11, 13, 71, 72, 1, 14, 24 | psrmulfval 21064 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg
(𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝐻)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
74 | 48, 70, 73 | 3eqtr4rd 2789 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑆)𝑌)) |
75 | 13 | fvexi 6770 |
. . . 4
⊢ 𝐵 ∈ V |
76 | | resspsr.p |
. . . . 5
⊢ 𝑃 = (𝑆 ↾s 𝐵) |
77 | 76, 51 | ressmulr 16943 |
. . . 4
⊢ (𝐵 ∈ V →
(.r‘𝑆) =
(.r‘𝑃)) |
78 | 75, 77 | mp1i 13 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (.r‘𝑆) = (.r‘𝑃)) |
79 | 78 | oveqd 7272 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑆)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
80 | 74, 79 | eqtrd 2778 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |