MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrmul Structured version   Visualization version   GIF version

Theorem resspsrmul 21883
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrmul ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))

Proof of Theorem resspsrmul
Dummy variables 𝑥 𝑘 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
21psrbaglefi 21833 . . . . . . 7 (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ∈ Fin)
32adantl 481 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ∈ Fin)
4 resspsr.2 . . . . . . . . 9 (𝜑𝑇 ∈ (SubRing‘𝑅))
5 subrgsubg 20462 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
64, 5syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (SubGrp‘𝑅))
7 subgsubm 19027 . . . . . . . 8 (𝑇 ∈ (SubGrp‘𝑅) → 𝑇 ∈ (SubMnd‘𝑅))
86, 7syl 17 . . . . . . 7 (𝜑𝑇 ∈ (SubMnd‘𝑅))
98ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑇 ∈ (SubMnd‘𝑅))
104ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑇 ∈ (SubRing‘𝑅))
11 resspsr.u . . . . . . . . . . . 12 𝑈 = (𝐼 mPwSer 𝐻)
12 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐻) = (Base‘𝐻)
13 resspsr.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑈)
14 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1511, 12, 1, 13, 14psrelbas 21841 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
1615adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
17 elrabi 3643 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} → 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
18 ffvelcdm 7015 . . . . . . . . . 10 ((𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑋𝑥) ∈ (Base‘𝐻))
1916, 17, 18syl2an 596 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝐻))
20 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
2120subrgbas 20466 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
2210, 21syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑇 = (Base‘𝐻))
2319, 22eleqtrrd 2831 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑋𝑥) ∈ 𝑇)
24 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
2511, 12, 1, 13, 24psrelbas 21841 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
2625ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
27 ssrab2 4031 . . . . . . . . . . 11 {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ⊆ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
28 simplr 768 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
29 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
30 eqid 2729 . . . . . . . . . . . . 13 {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} = {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}
311, 30psrbagconcl 21834 . . . . . . . . . . . 12 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
3228, 29, 31syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
3327, 32sselid 3933 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3426, 33ffvelcdmd 7019 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝐻))
3534, 22eleqtrrd 2831 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ 𝑇)
36 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
3736subrgmcl 20469 . . . . . . . 8 ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑋𝑥) ∈ 𝑇 ∧ (𝑌‘(𝑘f𝑥)) ∈ 𝑇) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ 𝑇)
3810, 23, 35, 37syl3anc 1373 . . . . . . 7 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ 𝑇)
3938fmpttd 7049 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))):{𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}⟶𝑇)
403, 9, 39, 20gsumsubm 18709 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))
4120, 36ressmulr 17211 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
424, 41syl 17 . . . . . . . . 9 (𝜑 → (.r𝑅) = (.r𝐻))
4342ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (.r𝑅) = (.r𝐻))
4443oveqd 7366 . . . . . . 7 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))
4544mpteq2dva 5185 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))
4645oveq2d 7365 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))))
4740, 46eqtrd 2764 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))))
4847mpteq2dva 5185 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))))
49 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
50 eqid 2729 . . . 4 (Base‘𝑆) = (Base‘𝑆)
51 eqid 2729 . . . 4 (.r𝑆) = (.r𝑆)
52 fvex 6835 . . . . . . . 8 (Base‘𝑅) ∈ V
534, 21syl 17 . . . . . . . . 9 (𝜑𝑇 = (Base‘𝐻))
54 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5554subrgss 20457 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
564, 55syl 17 . . . . . . . . 9 (𝜑𝑇 ⊆ (Base‘𝑅))
5753, 56eqsstrrd 3971 . . . . . . . 8 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
58 mapss 8816 . . . . . . . 8 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
5952, 57, 58sylancr 587 . . . . . . 7 (𝜑 → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6059adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
61 reldmpsr 21821 . . . . . . . . . 10 Rel dom mPwSer
6261, 11, 13elbasov 17127 . . . . . . . . 9 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝐻 ∈ V))
6362ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐼 ∈ V ∧ 𝐻 ∈ V))
6463simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐼 ∈ V)
6511, 12, 1, 13, 64psrbas 21840 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6649, 54, 1, 50, 64psrbas 21840 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6760, 65, 663sstr4d 3991 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
6867, 14sseldd 3936 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑆))
6967, 24sseldd 3936 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
7049, 50, 36, 51, 1, 68, 69psrmulfval 21850 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑆)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
71 eqid 2729 . . . 4 (.r𝐻) = (.r𝐻)
72 eqid 2729 . . . 4 (.r𝑈) = (.r𝑈)
7311, 13, 71, 72, 1, 14, 24psrmulfval 21850 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))))
7448, 70, 733eqtr4rd 2775 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑆)𝑌))
7513fvexi 6836 . . . 4 𝐵 ∈ V
76 resspsr.p . . . . 5 𝑃 = (𝑆s 𝐵)
7776, 51ressmulr 17211 . . . 4 (𝐵 ∈ V → (.r𝑆) = (.r𝑃))
7875, 77mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (.r𝑆) = (.r𝑃))
7978oveqd 7366 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑆)𝑌) = (𝑋(.r𝑃)𝑌))
8074, 79eqtrd 2764 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  wss 3903   class class class wbr 5092  cmpt 5173  ccnv 5618  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  r cofr 7612  m cmap 8753  Fincfn 8872  cle 11150  cmin 11347  cn 12128  0cn0 12384  Basecbs 17120  s cress 17141  .rcmulr 17162   Σg cgsu 17344  SubMndcsubmnd 18656  SubGrpcsubg 18999  SubRingcsubrg 20454   mPwSer cmps 21811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-psr 21816
This theorem is referenced by:  subrgpsr  21885  ressmplmul  21935
  Copyright terms: Public domain W3C validator