MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrmul Structured version   Visualization version   GIF version

Theorem resspsrmul 21925
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅 β†Ύs 𝑇)
resspsr.u π‘ˆ = (𝐼 mPwSer 𝐻)
resspsr.b 𝐡 = (Baseβ€˜π‘ˆ)
resspsr.p 𝑃 = (𝑆 β†Ύs 𝐡)
resspsr.2 (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
Assertion
Ref Expression
resspsrmul ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (𝑋(.rβ€˜π‘ƒ)π‘Œ))

Proof of Theorem resspsrmul
Dummy variables π‘₯ π‘˜ 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . . . . 8 {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
21psrbaglefi 21869 . . . . . . 7 (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} β†’ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ∈ Fin)
32adantl 480 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ∈ Fin)
4 resspsr.2 . . . . . . . . 9 (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
5 subrgsubg 20520 . . . . . . . . 9 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 ∈ (SubGrpβ€˜π‘…))
64, 5syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑇 ∈ (SubGrpβ€˜π‘…))
7 subgsubm 19107 . . . . . . . 8 (𝑇 ∈ (SubGrpβ€˜π‘…) β†’ 𝑇 ∈ (SubMndβ€˜π‘…))
86, 7syl 17 . . . . . . 7 (πœ‘ β†’ 𝑇 ∈ (SubMndβ€˜π‘…))
98ad2antrr 724 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ 𝑇 ∈ (SubMndβ€˜π‘…))
104ad3antrrr 728 . . . . . . . 8 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
11 resspsr.u . . . . . . . . . . . 12 π‘ˆ = (𝐼 mPwSer 𝐻)
12 eqid 2725 . . . . . . . . . . . 12 (Baseβ€˜π») = (Baseβ€˜π»)
13 resspsr.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜π‘ˆ)
14 simprl 769 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
1511, 12, 1, 13, 14psrelbas 21883 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π»))
1615adantr 479 . . . . . . . . . 10 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ 𝑋:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π»))
17 elrabi 3668 . . . . . . . . . 10 (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} β†’ π‘₯ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin})
18 ffvelcdm 7086 . . . . . . . . . 10 ((𝑋:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π») ∧ π‘₯ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (π‘‹β€˜π‘₯) ∈ (Baseβ€˜π»))
1916, 17, 18syl2an 594 . . . . . . . . 9 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘‹β€˜π‘₯) ∈ (Baseβ€˜π»))
20 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅 β†Ύs 𝑇)
2120subrgbas 20524 . . . . . . . . . 10 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 = (Baseβ€˜π»))
2210, 21syl 17 . . . . . . . . 9 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ 𝑇 = (Baseβ€˜π»))
2319, 22eleqtrrd 2828 . . . . . . . 8 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘‹β€˜π‘₯) ∈ 𝑇)
24 simprr 771 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
2511, 12, 1, 13, 24psrelbas 21883 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π»))
2625ad2antrr 724 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ π‘Œ:{𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}⟢(Baseβ€˜π»))
27 ssrab2 4069 . . . . . . . . . . 11 {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} βŠ† {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
28 simplr 767 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin})
29 simpr 483 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜})
30 eqid 2725 . . . . . . . . . . . . 13 {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} = {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}
311, 30psrbagconcl 21871 . . . . . . . . . . . 12 ((π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘˜ ∘f βˆ’ π‘₯) ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜})
3228, 29, 31syl2anc 582 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘˜ ∘f βˆ’ π‘₯) ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜})
3327, 32sselid 3970 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘˜ ∘f βˆ’ π‘₯) ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin})
3426, 33ffvelcdmd 7090 . . . . . . . . 9 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)) ∈ (Baseβ€˜π»))
3534, 22eleqtrrd 2828 . . . . . . . 8 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)) ∈ 𝑇)
36 eqid 2725 . . . . . . . . 9 (.rβ€˜π‘…) = (.rβ€˜π‘…)
3736subrgmcl 20527 . . . . . . . 8 ((𝑇 ∈ (SubRingβ€˜π‘…) ∧ (π‘‹β€˜π‘₯) ∈ 𝑇 ∧ (π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)) ∈ 𝑇) β†’ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))) ∈ 𝑇)
3810, 23, 35, 37syl3anc 1368 . . . . . . 7 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))) ∈ 𝑇)
3938fmpttd 7120 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))):{𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}βŸΆπ‘‡)
403, 9, 39, 20gsumsubm 18791 . . . . 5 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))) = (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))))
4120, 36ressmulr 17287 . . . . . . . . . 10 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ (.rβ€˜π‘…) = (.rβ€˜π»))
424, 41syl 17 . . . . . . . . 9 (πœ‘ β†’ (.rβ€˜π‘…) = (.rβ€˜π»))
4342ad3antrrr 728 . . . . . . . 8 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ (.rβ€˜π‘…) = (.rβ€˜π»))
4443oveqd 7433 . . . . . . 7 ((((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) ∧ π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜}) β†’ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))) = ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))
4544mpteq2dva 5243 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))) = (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))
4645oveq2d 7432 . . . . 5 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))) = (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))))
4740, 46eqtrd 2765 . . . 4 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) β†’ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))) = (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯))))))
4847mpteq2dva 5243 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))) = (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ↦ (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
49 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
50 eqid 2725 . . . 4 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
51 eqid 2725 . . . 4 (.rβ€˜π‘†) = (.rβ€˜π‘†)
52 fvex 6905 . . . . . . . 8 (Baseβ€˜π‘…) ∈ V
534, 21syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑇 = (Baseβ€˜π»))
54 eqid 2725 . . . . . . . . . . 11 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
5554subrgss 20515 . . . . . . . . . 10 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 βŠ† (Baseβ€˜π‘…))
564, 55syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑇 βŠ† (Baseβ€˜π‘…))
5753, 56eqsstrrd 4012 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜π») βŠ† (Baseβ€˜π‘…))
58 mapss 8906 . . . . . . . 8 (((Baseβ€˜π‘…) ∈ V ∧ (Baseβ€˜π») βŠ† (Baseβ€˜π‘…)) β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
5952, 57, 58sylancr 585 . . . . . . 7 (πœ‘ β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
6059adantr 479 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
61 reldmpsr 21851 . . . . . . . . . 10 Rel dom mPwSer
6261, 11, 13elbasov 17186 . . . . . . . . 9 (𝑋 ∈ 𝐡 β†’ (𝐼 ∈ V ∧ 𝐻 ∈ V))
6362ad2antrl 726 . . . . . . . 8 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝐼 ∈ V ∧ 𝐻 ∈ V))
6463simpld 493 . . . . . . 7 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐼 ∈ V)
6511, 12, 1, 13, 64psrbas 21882 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐡 = ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
6649, 54, 1, 50, 64psrbas 21882 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (Baseβ€˜π‘†) = ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
6760, 65, 663sstr4d 4020 . . . . 5 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐡 βŠ† (Baseβ€˜π‘†))
6867, 14sseldd 3973 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ (Baseβ€˜π‘†))
6967, 24sseldd 3973 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ (Baseβ€˜π‘†))
7049, 50, 36, 51, 1, 68, 69psrmulfval 21892 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘†)π‘Œ) = (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π‘…)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
71 eqid 2725 . . . 4 (.rβ€˜π») = (.rβ€˜π»)
72 eqid 2725 . . . 4 (.rβ€˜π‘ˆ) = (.rβ€˜π‘ˆ)
7311, 13, 71, 72, 1, 14, 24psrmulfval 21892 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (π‘˜ ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ↦ (𝐻 Ξ£g (π‘₯ ∈ {𝑦 ∈ {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘‹β€˜π‘₯)(.rβ€˜π»)(π‘Œβ€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
7448, 70, 733eqtr4rd 2776 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (𝑋(.rβ€˜π‘†)π‘Œ))
7513fvexi 6906 . . . 4 𝐡 ∈ V
76 resspsr.p . . . . 5 𝑃 = (𝑆 β†Ύs 𝐡)
7776, 51ressmulr 17287 . . . 4 (𝐡 ∈ V β†’ (.rβ€˜π‘†) = (.rβ€˜π‘ƒ))
7875, 77mp1i 13 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (.rβ€˜π‘†) = (.rβ€˜π‘ƒ))
7978oveqd 7433 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘†)π‘Œ) = (𝑋(.rβ€˜π‘ƒ)π‘Œ))
8074, 79eqtrd 2765 1 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(.rβ€˜π‘ˆ)π‘Œ) = (𝑋(.rβ€˜π‘ƒ)π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {crab 3419  Vcvv 3463   βŠ† wss 3939   class class class wbr 5143   ↦ cmpt 5226  β—‘ccnv 5671   β€œ cima 5675  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7416   ∘f cof 7680   ∘r cofr 7681   ↑m cmap 8843  Fincfn 8962   ≀ cle 11279   βˆ’ cmin 11474  β„•cn 12242  β„•0cn0 12502  Basecbs 17179   β†Ύs cress 17208  .rcmulr 17233   Ξ£g cgsu 17421  SubMndcsubmnd 18738  SubGrpcsubg 19079  SubRingcsubrg 20510   mPwSer cmps 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7991  df-2nd 7992  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-seq 13999  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-tset 17251  df-0g 17422  df-gsum 17423  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-grp 18897  df-minusg 18898  df-subg 19082  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-ring 20179  df-subrng 20487  df-subrg 20512  df-psr 21846
This theorem is referenced by:  subrgpsr  21927  ressmplmul  21975
  Copyright terms: Public domain W3C validator