MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrmul Structured version   Visualization version   GIF version

Theorem resspsrmul 20200
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrmul ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))

Proof of Theorem resspsrmul
Dummy variables 𝑥 𝑘 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmpsr 20144 . . . . . . . . . 10 Rel dom mPwSer
2 resspsr.u . . . . . . . . . 10 𝑈 = (𝐼 mPwSer 𝐻)
3 resspsr.b . . . . . . . . . 10 𝐵 = (Base‘𝑈)
41, 2, 3elbasov 16548 . . . . . . . . 9 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝐻 ∈ V))
54ad2antrl 726 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐼 ∈ V ∧ 𝐻 ∈ V))
65simpld 497 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐼 ∈ V)
7 eqid 2824 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 20155 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ∈ Fin)
96, 8sylan 582 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ∈ Fin)
10 resspsr.2 . . . . . . . . 9 (𝜑𝑇 ∈ (SubRing‘𝑅))
11 subrgsubg 19544 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
1210, 11syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (SubGrp‘𝑅))
13 subgsubm 18304 . . . . . . . 8 (𝑇 ∈ (SubGrp‘𝑅) → 𝑇 ∈ (SubMnd‘𝑅))
1412, 13syl 17 . . . . . . 7 (𝜑𝑇 ∈ (SubMnd‘𝑅))
1514ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑇 ∈ (SubMnd‘𝑅))
1610ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑇 ∈ (SubRing‘𝑅))
17 eqid 2824 . . . . . . . . . . . 12 (Base‘𝐻) = (Base‘𝐻)
18 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
192, 17, 7, 3, 18psrelbas 20162 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
2019adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
21 elrabi 3678 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} → 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
22 ffvelrn 6852 . . . . . . . . . 10 ((𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑋𝑥) ∈ (Base‘𝐻))
2320, 21, 22syl2an 597 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝐻))
24 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
2524subrgbas 19547 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
2616, 25syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑇 = (Base‘𝐻))
2723, 26eleqtrrd 2919 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑋𝑥) ∈ 𝑇)
28 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
292, 17, 7, 3, 28psrelbas 20162 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
3029ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
31 ssrab2 4059 . . . . . . . . . . 11 {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ⊆ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
326ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝐼 ∈ V)
33 simplr 767 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
34 simpr 487 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
35 eqid 2824 . . . . . . . . . . . . 13 {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} = {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}
367, 35psrbagconcl 20156 . . . . . . . . . . . 12 ((𝐼 ∈ V ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
3732, 33, 34, 36syl3anc 1367 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
3831, 37sseldi 3968 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3930, 38ffvelrnd 6855 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝐻))
4039, 26eleqtrrd 2919 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ 𝑇)
41 eqid 2824 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
4241subrgmcl 19550 . . . . . . . 8 ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑋𝑥) ∈ 𝑇 ∧ (𝑌‘(𝑘f𝑥)) ∈ 𝑇) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ 𝑇)
4316, 27, 40, 42syl3anc 1367 . . . . . . 7 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ 𝑇)
4443fmpttd 6882 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))):{𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}⟶𝑇)
459, 15, 44, 24gsumsubm 18002 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))
4624, 41ressmulr 16628 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
4710, 46syl 17 . . . . . . . . 9 (𝜑 → (.r𝑅) = (.r𝐻))
4847ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (.r𝑅) = (.r𝐻))
4948oveqd 7176 . . . . . . 7 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))
5049mpteq2dva 5164 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))
5150oveq2d 7175 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))))
5245, 51eqtrd 2859 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))))
5352mpteq2dva 5164 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))))
54 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
55 eqid 2824 . . . 4 (Base‘𝑆) = (Base‘𝑆)
56 eqid 2824 . . . 4 (.r𝑆) = (.r𝑆)
57 fvex 6686 . . . . . . . 8 (Base‘𝑅) ∈ V
5810, 25syl 17 . . . . . . . . 9 (𝜑𝑇 = (Base‘𝐻))
59 eqid 2824 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
6059subrgss 19539 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
6110, 60syl 17 . . . . . . . . 9 (𝜑𝑇 ⊆ (Base‘𝑅))
6258, 61eqsstrrd 4009 . . . . . . . 8 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
63 mapss 8456 . . . . . . . 8 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6457, 62, 63sylancr 589 . . . . . . 7 (𝜑 → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6564adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
662, 17, 7, 3, 6psrbas 20161 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6754, 59, 7, 55, 6psrbas 20161 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6865, 66, 673sstr4d 4017 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
6968, 18sseldd 3971 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑆))
7068, 28sseldd 3971 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
7154, 55, 41, 56, 7, 69, 70psrmulfval 20168 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑆)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
72 eqid 2824 . . . 4 (.r𝐻) = (.r𝐻)
73 eqid 2824 . . . 4 (.r𝑈) = (.r𝑈)
742, 3, 72, 73, 7, 18, 28psrmulfval 20168 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))))
7553, 71, 743eqtr4rd 2870 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑆)𝑌))
763fvexi 6687 . . . 4 𝐵 ∈ V
77 resspsr.p . . . . 5 𝑃 = (𝑆s 𝐵)
7877, 56ressmulr 16628 . . . 4 (𝐵 ∈ V → (.r𝑆) = (.r𝑃))
7976, 78mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (.r𝑆) = (.r𝑃))
8079oveqd 7176 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑆)𝑌) = (𝑋(.r𝑃)𝑌))
8175, 80eqtrd 2859 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  {crab 3145  Vcvv 3497  wss 3939   class class class wbr 5069  cmpt 5149  ccnv 5557  cima 5561  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410  r cofr 7411  m cmap 8409  Fincfn 8512  cle 10679  cmin 10873  cn 11641  0cn0 11900  Basecbs 16486  s cress 16487  .rcmulr 16569   Σg cgsu 16717  SubMndcsubmnd 17958  SubGrpcsubg 18276  SubRingcsubrg 19534   mPwSer cmps 20134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-tset 16587  df-0g 16718  df-gsum 16719  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-subg 18279  df-mgp 19243  df-ring 19302  df-subrg 19536  df-psr 20139
This theorem is referenced by:  subrgpsr  20202  ressmplmul  20242
  Copyright terms: Public domain W3C validator