| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrvscacl | Structured version Visualization version GIF version | ||
| Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrvscacl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrvscacl.n | ⊢ · = ( ·𝑠 ‘𝑆) |
| psrvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrvscacl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| psrvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| psrvscacl.y | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psrvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvscacl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | psrvscacl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 2, 3 | ringcl 20166 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
| 5 | 4 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
| 6 | 1, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
| 7 | psrvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 8 | fconst6g 6712 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
| 10 | psrvscacl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 11 | eqid 2731 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 12 | psrvscacl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 13 | psrvscacl.y | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 14 | 10, 2, 11, 12, 13 | psrelbas 21869 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
| 15 | ovex 7379 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 16 | 15 | rabex 5277 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 18 | inidm 4177 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 19 | 6, 9, 14, 17, 17, 18 | off 7628 | . . 3 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
| 20 | 2 | fvexi 6836 | . . . 4 ⊢ 𝐾 ∈ V |
| 21 | 20, 16 | elmap 8795 | . . 3 ⊢ ((({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹) ∈ (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
| 22 | 19, 21 | sylibr 234 | . 2 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹) ∈ (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 23 | psrvscacl.n | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 24 | 10, 23, 2, 12, 3, 11, 7, 13 | psrvsca 21884 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹)) |
| 25 | reldmpsr 21849 | . . . . . 6 ⊢ Rel dom mPwSer | |
| 26 | 25, 10, 12 | elbasov 17124 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 27 | 13, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 28 | 27 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 29 | 10, 2, 11, 12, 28 | psrbas 21868 | . 2 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 30 | 22, 24, 29 | 3eltr4d 2846 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 {csn 4576 × cxp 5614 ◡ccnv 5615 “ cima 5619 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ↑m cmap 8750 Fincfn 8869 ℕcn 12122 ℕ0cn0 12378 Basecbs 17117 .rcmulr 17159 ·𝑠 cvsca 17162 Ringcrg 20149 mPwSer cmps 21839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-tset 17177 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mgp 20057 df-ring 20151 df-psr 21844 |
| This theorem is referenced by: psrlmod 21895 psrass23l 21902 psrass23 21904 mpllsslem 21935 psdvsca 22077 |
| Copyright terms: Public domain | W3C validator |