Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscacl Structured version   Visualization version   GIF version

Theorem psrvscacl 20629
 Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrvscacl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvscacl.n · = ( ·𝑠𝑆)
psrvscacl.k 𝐾 = (Base‘𝑅)
psrvscacl.b 𝐵 = (Base‘𝑆)
psrvscacl.r (𝜑𝑅 ∈ Ring)
psrvscacl.x (𝜑𝑋𝐾)
psrvscacl.y (𝜑𝐹𝐵)
Assertion
Ref Expression
psrvscacl (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)

Proof of Theorem psrvscacl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvscacl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 psrvscacl.k . . . . . . 7 𝐾 = (Base‘𝑅)
3 eqid 2822 . . . . . . 7 (.r𝑅) = (.r𝑅)
42, 3ringcl 19305 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
543expb 1117 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
61, 5sylan 583 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
7 psrvscacl.x . . . . 5 (𝜑𝑋𝐾)
8 fconst6g 6549 . . . . 5 (𝑋𝐾 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
97, 8syl 17 . . . 4 (𝜑 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
10 psrvscacl.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
11 eqid 2822 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 psrvscacl.b . . . . 5 𝐵 = (Base‘𝑆)
13 psrvscacl.y . . . . 5 (𝜑𝐹𝐵)
1410, 2, 11, 12, 13psrelbas 20615 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
15 ovex 7173 . . . . . 6 (ℕ0m 𝐼) ∈ V
1615rabex 5211 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
18 inidm 4169 . . . 4 ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
196, 9, 14, 17, 17, 18off 7409 . . 3 (𝜑 → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
202fvexi 6666 . . . 4 𝐾 ∈ V
2120, 16elmap 8422 . . 3 ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹) ∈ (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
2219, 21sylibr 237 . 2 (𝜑 → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹) ∈ (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
23 psrvscacl.n . . 3 · = ( ·𝑠𝑆)
2410, 23, 2, 12, 3, 11, 7, 13psrvsca 20627 . 2 (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹))
25 reldmpsr 20597 . . . . . 6 Rel dom mPwSer
2625, 10, 12elbasov 16536 . . . . 5 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2713, 26syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2827simpld 498 . . 3 (𝜑𝐼 ∈ V)
2910, 2, 11, 12, 28psrbas 20614 . 2 (𝜑𝐵 = (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3022, 24, 293eltr4d 2929 1 (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114  {crab 3134  Vcvv 3469  {csn 4539   × cxp 5530  ◡ccnv 5531   “ cima 5535  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∘f cof 7392   ↑m cmap 8393  Fincfn 8496  ℕcn 11625  ℕ0cn0 11885  Basecbs 16474  .rcmulr 16557   ·𝑠 cvsca 16560  Ringcrg 19288   mPwSer cmps 20587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-tset 16575  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mgp 19231  df-ring 19290  df-psr 20592 This theorem is referenced by:  psrlmod  20637  psrass23l  20644  psrass23  20646  mpllsslem  20671
 Copyright terms: Public domain W3C validator