MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscacl Structured version   Visualization version   GIF version

Theorem psrvscacl 21233
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrvscacl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvscacl.n · = ( ·𝑠𝑆)
psrvscacl.k 𝐾 = (Base‘𝑅)
psrvscacl.b 𝐵 = (Base‘𝑆)
psrvscacl.r (𝜑𝑅 ∈ Ring)
psrvscacl.x (𝜑𝑋𝐾)
psrvscacl.y (𝜑𝐹𝐵)
Assertion
Ref Expression
psrvscacl (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)

Proof of Theorem psrvscacl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvscacl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 psrvscacl.k . . . . . . 7 𝐾 = (Base‘𝑅)
3 eqid 2737 . . . . . . 7 (.r𝑅) = (.r𝑅)
42, 3ringcl 19867 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
543expb 1119 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
61, 5sylan 580 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
7 psrvscacl.x . . . . 5 (𝜑𝑋𝐾)
8 fconst6g 6698 . . . . 5 (𝑋𝐾 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
97, 8syl 17 . . . 4 (𝜑 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
10 psrvscacl.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
11 eqid 2737 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 psrvscacl.b . . . . 5 𝐵 = (Base‘𝑆)
13 psrvscacl.y . . . . 5 (𝜑𝐹𝐵)
1410, 2, 11, 12, 13psrelbas 21219 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
15 ovex 7346 . . . . . 6 (ℕ0m 𝐼) ∈ V
1615rabex 5269 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
18 inidm 4162 . . . 4 ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
196, 9, 14, 17, 17, 18off 7589 . . 3 (𝜑 → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
202fvexi 6823 . . . 4 𝐾 ∈ V
2120, 16elmap 8705 . . 3 ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹) ∈ (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
2219, 21sylibr 233 . 2 (𝜑 → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹) ∈ (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
23 psrvscacl.n . . 3 · = ( ·𝑠𝑆)
2410, 23, 2, 12, 3, 11, 7, 13psrvsca 21231 . 2 (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹))
25 reldmpsr 21188 . . . . . 6 Rel dom mPwSer
2625, 10, 12elbasov 16986 . . . . 5 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2713, 26syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2827simpld 495 . . 3 (𝜑𝐼 ∈ V)
2910, 2, 11, 12, 28psrbas 21218 . 2 (𝜑𝐵 = (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3022, 24, 293eltr4d 2853 1 (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  {crab 3404  Vcvv 3441  {csn 4569   × cxp 5603  ccnv 5604  cima 5608  wf 6459  cfv 6463  (class class class)co 7313  f cof 7569  m cmap 8661  Fincfn 8779  cn 12043  0cn0 12303  Basecbs 16979  .rcmulr 17030   ·𝑠 cvsca 17033  Ringcrg 19850   mPwSer cmps 21178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-om 7756  df-1st 7874  df-2nd 7875  df-supp 8023  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-map 8663  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-fsupp 9197  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-uz 12653  df-fz 13310  df-struct 16915  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-plusg 17042  df-mulr 17043  df-sca 17045  df-vsca 17046  df-tset 17048  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-mgp 19788  df-ring 19852  df-psr 21183
This theorem is referenced by:  psrlmod  21241  psrass23l  21248  psrass23  21250  mpllsslem  21277
  Copyright terms: Public domain W3C validator