Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrvscacl | Structured version Visualization version GIF version |
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrvscacl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrvscacl.n | ⊢ · = ( ·𝑠 ‘𝑆) |
psrvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
psrvscacl.b | ⊢ 𝐵 = (Base‘𝑆) |
psrvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
psrvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
psrvscacl.y | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
psrvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrvscacl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | psrvscacl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | 2, 3 | ringcl 19715 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
5 | 4 | 3expb 1118 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
6 | 1, 5 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
7 | psrvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
8 | fconst6g 6647 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
10 | psrvscacl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
11 | eqid 2738 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
12 | psrvscacl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
13 | psrvscacl.y | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
14 | 10, 2, 11, 12, 13 | psrelbas 21058 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
15 | ovex 7288 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
16 | 15 | rabex 5251 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
18 | inidm 4149 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | 6, 9, 14, 17, 17, 18 | off 7529 | . . 3 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
20 | 2 | fvexi 6770 | . . . 4 ⊢ 𝐾 ∈ V |
21 | 20, 16 | elmap 8617 | . . 3 ⊢ ((({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹) ∈ (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
22 | 19, 21 | sylibr 233 | . 2 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹) ∈ (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
23 | psrvscacl.n | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
24 | 10, 23, 2, 12, 3, 11, 7, 13 | psrvsca 21070 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹)) |
25 | reldmpsr 21027 | . . . . . 6 ⊢ Rel dom mPwSer | |
26 | 25, 10, 12 | elbasov 16847 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
27 | 13, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
28 | 27 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
29 | 10, 2, 11, 12, 28 | psrbas 21057 | . 2 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
30 | 22, 24, 29 | 3eltr4d 2854 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 {csn 4558 × cxp 5578 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ↑m cmap 8573 Fincfn 8691 ℕcn 11903 ℕ0cn0 12163 Basecbs 16840 .rcmulr 16889 ·𝑠 cvsca 16892 Ringcrg 19698 mPwSer cmps 21017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mgp 19636 df-ring 19700 df-psr 21022 |
This theorem is referenced by: psrlmod 21080 psrass23l 21087 psrass23 21089 mpllsslem 21116 |
Copyright terms: Public domain | W3C validator |