![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrvscacl | Structured version Visualization version GIF version |
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrvscacl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrvscacl.n | ⊢ · = ( ·𝑠 ‘𝑆) |
psrvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
psrvscacl.b | ⊢ 𝐵 = (Base‘𝑆) |
psrvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
psrvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
psrvscacl.y | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
psrvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrvscacl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | psrvscacl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
3 | eqid 2740 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | 2, 3 | ringcl 20277 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
5 | 4 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
6 | 1, 5 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
7 | psrvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
8 | fconst6g 6810 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
10 | psrvscacl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
11 | eqid 2740 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
12 | psrvscacl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
13 | psrvscacl.y | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
14 | 10, 2, 11, 12, 13 | psrelbas 21977 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
15 | ovex 7481 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
16 | 15 | rabex 5357 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
18 | inidm 4248 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | 6, 9, 14, 17, 17, 18 | off 7732 | . . 3 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
20 | 2 | fvexi 6934 | . . . 4 ⊢ 𝐾 ∈ V |
21 | 20, 16 | elmap 8929 | . . 3 ⊢ ((({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹) ∈ (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
22 | 19, 21 | sylibr 234 | . 2 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹) ∈ (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
23 | psrvscacl.n | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
24 | 10, 23, 2, 12, 3, 11, 7, 13 | psrvsca 21992 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹)) |
25 | reldmpsr 21957 | . . . . . 6 ⊢ Rel dom mPwSer | |
26 | 25, 10, 12 | elbasov 17265 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
27 | 13, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
28 | 27 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
29 | 10, 2, 11, 12, 28 | psrbas 21976 | . 2 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
30 | 22, 24, 29 | 3eltr4d 2859 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 {csn 4648 × cxp 5698 ◡ccnv 5699 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 ↑m cmap 8884 Fincfn 9003 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 ·𝑠 cvsca 17315 Ringcrg 20260 mPwSer cmps 21947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mgp 20162 df-ring 20262 df-psr 21952 |
This theorem is referenced by: psrlmod 22003 psrass23l 22010 psrass23 22012 mpllsslem 22043 psdvsca 22191 |
Copyright terms: Public domain | W3C validator |