| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrvscacl | Structured version Visualization version GIF version | ||
| Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrvscacl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrvscacl.n | ⊢ · = ( ·𝑠 ‘𝑆) |
| psrvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrvscacl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| psrvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| psrvscacl.y | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psrvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvscacl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | psrvscacl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | eqid 2736 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 2, 3 | ringcl 20215 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
| 5 | 4 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
| 6 | 1, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
| 7 | psrvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 8 | fconst6g 6772 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
| 10 | psrvscacl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 11 | eqid 2736 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 12 | psrvscacl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 13 | psrvscacl.y | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 14 | 10, 2, 11, 12, 13 | psrelbas 21899 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
| 15 | ovex 7443 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 16 | 15 | rabex 5314 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 18 | inidm 4207 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 19 | 6, 9, 14, 17, 17, 18 | off 7694 | . . 3 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
| 20 | 2 | fvexi 6895 | . . . 4 ⊢ 𝐾 ∈ V |
| 21 | 20, 16 | elmap 8890 | . . 3 ⊢ ((({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹) ∈ (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
| 22 | 19, 21 | sylibr 234 | . 2 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹) ∈ (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 23 | psrvscacl.n | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 24 | 10, 23, 2, 12, 3, 11, 7, 13 | psrvsca 21914 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝐹)) |
| 25 | reldmpsr 21879 | . . . . . 6 ⊢ Rel dom mPwSer | |
| 26 | 25, 10, 12 | elbasov 17240 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 27 | 13, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 28 | 27 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 29 | 10, 2, 11, 12, 28 | psrbas 21898 | . 2 ⊢ (𝜑 → 𝐵 = (𝐾 ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
| 30 | 22, 24, 29 | 3eltr4d 2850 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 {csn 4606 × cxp 5657 ◡ccnv 5658 “ cima 5662 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 .rcmulr 17277 ·𝑠 cvsca 17280 Ringcrg 20198 mPwSer cmps 21869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-tset 17295 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mgp 20106 df-ring 20200 df-psr 21874 |
| This theorem is referenced by: psrlmod 21925 psrass23l 21932 psrass23 21934 mpllsslem 21965 psdvsca 22107 |
| Copyright terms: Public domain | W3C validator |