MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscacl Structured version   Visualization version   GIF version

Theorem psrvscacl 20631
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrvscacl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvscacl.n · = ( ·𝑠𝑆)
psrvscacl.k 𝐾 = (Base‘𝑅)
psrvscacl.b 𝐵 = (Base‘𝑆)
psrvscacl.r (𝜑𝑅 ∈ Ring)
psrvscacl.x (𝜑𝑋𝐾)
psrvscacl.y (𝜑𝐹𝐵)
Assertion
Ref Expression
psrvscacl (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)

Proof of Theorem psrvscacl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvscacl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 psrvscacl.k . . . . . . 7 𝐾 = (Base‘𝑅)
3 eqid 2798 . . . . . . 7 (.r𝑅) = (.r𝑅)
42, 3ringcl 19307 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
543expb 1117 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
61, 5sylan 583 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
7 psrvscacl.x . . . . 5 (𝜑𝑋𝐾)
8 fconst6g 6542 . . . . 5 (𝑋𝐾 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
97, 8syl 17 . . . 4 (𝜑 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
10 psrvscacl.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
11 eqid 2798 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 psrvscacl.b . . . . 5 𝐵 = (Base‘𝑆)
13 psrvscacl.y . . . . 5 (𝜑𝐹𝐵)
1410, 2, 11, 12, 13psrelbas 20617 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
15 ovex 7168 . . . . . 6 (ℕ0m 𝐼) ∈ V
1615rabex 5199 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
18 inidm 4145 . . . 4 ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
196, 9, 14, 17, 17, 18off 7404 . . 3 (𝜑 → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
202fvexi 6659 . . . 4 𝐾 ∈ V
2120, 16elmap 8418 . . 3 ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹) ∈ (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
2219, 21sylibr 237 . 2 (𝜑 → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹) ∈ (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
23 psrvscacl.n . . 3 · = ( ·𝑠𝑆)
2410, 23, 2, 12, 3, 11, 7, 13psrvsca 20629 . 2 (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹))
25 reldmpsr 20599 . . . . . 6 Rel dom mPwSer
2625, 10, 12elbasov 16537 . . . . 5 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2713, 26syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2827simpld 498 . . 3 (𝜑𝐼 ∈ V)
2910, 2, 11, 12, 28psrbas 20616 . 2 (𝜑𝐵 = (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3022, 24, 293eltr4d 2905 1 (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  {csn 4525   × cxp 5517  ccnv 5518  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  m cmap 8389  Fincfn 8492  cn 11625  0cn0 11885  Basecbs 16475  .rcmulr 16558   ·𝑠 cvsca 16561  Ringcrg 19290   mPwSer cmps 20589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mgp 19233  df-ring 19292  df-psr 20594
This theorem is referenced by:  psrlmod  20639  psrass23l  20646  psrass23  20648  mpllsslem  20673
  Copyright terms: Public domain W3C validator