MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscacl Structured version   Visualization version   GIF version

Theorem psrvscacl 21361
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrvscacl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvscacl.n · = ( ·𝑠𝑆)
psrvscacl.k 𝐾 = (Base‘𝑅)
psrvscacl.b 𝐵 = (Base‘𝑆)
psrvscacl.r (𝜑𝑅 ∈ Ring)
psrvscacl.x (𝜑𝑋𝐾)
psrvscacl.y (𝜑𝐹𝐵)
Assertion
Ref Expression
psrvscacl (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)

Proof of Theorem psrvscacl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvscacl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 psrvscacl.k . . . . . . 7 𝐾 = (Base‘𝑅)
3 eqid 2736 . . . . . . 7 (.r𝑅) = (.r𝑅)
42, 3ringcl 19981 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
543expb 1120 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
61, 5sylan 580 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(.r𝑅)𝑦) ∈ 𝐾)
7 psrvscacl.x . . . . 5 (𝜑𝑋𝐾)
8 fconst6g 6731 . . . . 5 (𝑋𝐾 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
97, 8syl 17 . . . 4 (𝜑 → ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
10 psrvscacl.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
11 eqid 2736 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 psrvscacl.b . . . . 5 𝐵 = (Base‘𝑆)
13 psrvscacl.y . . . . 5 (𝜑𝐹𝐵)
1410, 2, 11, 12, 13psrelbas 21347 . . . 4 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
15 ovex 7390 . . . . . 6 (ℕ0m 𝐼) ∈ V
1615rabex 5289 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
18 inidm 4178 . . . 4 ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
196, 9, 14, 17, 17, 18off 7635 . . 3 (𝜑 → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
202fvexi 6856 . . . 4 𝐾 ∈ V
2120, 16elmap 8809 . . 3 ((({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹) ∈ (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
2219, 21sylibr 233 . 2 (𝜑 → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹) ∈ (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
23 psrvscacl.n . . 3 · = ( ·𝑠𝑆)
2410, 23, 2, 12, 3, 11, 7, 13psrvsca 21359 . 2 (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝐹))
25 reldmpsr 21316 . . . . . 6 Rel dom mPwSer
2625, 10, 12elbasov 17090 . . . . 5 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2713, 26syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2827simpld 495 . . 3 (𝜑𝐼 ∈ V)
2910, 2, 11, 12, 28psrbas 21346 . 2 (𝜑𝐵 = (𝐾m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3022, 24, 293eltr4d 2853 1 (𝜑 → (𝑋 · 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  {csn 4586   × cxp 5631  ccnv 5632  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765  Fincfn 8883  cn 12153  0cn0 12413  Basecbs 17083  .rcmulr 17134   ·𝑠 cvsca 17137  Ringcrg 19964   mPwSer cmps 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-tset 17152  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mgp 19897  df-ring 19966  df-psr 21311
This theorem is referenced by:  psrlmod  21370  psrass23l  21377  psrass23  21379  mpllsslem  21406
  Copyright terms: Public domain W3C validator