MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulcllem Structured version   Visualization version   GIF version

Theorem psrmulcllem 21907
Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrmulcl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulcl.b 𝐵 = (Base‘𝑆)
psrmulcl.t · = (.r𝑆)
psrmulcl.r (𝜑𝑅 ∈ Ring)
psrmulcl.x (𝜑𝑋𝐵)
psrmulcl.y (𝜑𝑌𝐵)
psrmulcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrmulcllem (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   · (𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem psrmulcllem
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmulcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 psrmulcl.r . . . . 5 (𝜑𝑅 ∈ Ring)
3 psrmulcl.s . . . . . 6 𝑆 = (𝐼 mPwSer 𝑅)
4 eqid 2725 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
5 psrmulcl.b . . . . . 6 𝐵 = (Base‘𝑆)
6 psrmulcl.x . . . . . 6 (𝜑𝑋𝐵)
73, 4, 1, 5, 6psrelbas 21896 . . . . 5 (𝜑𝑋:𝐷⟶(Base‘𝑅))
8 psrmulcl.y . . . . . 6 (𝜑𝑌𝐵)
93, 4, 1, 5, 8psrelbas 21896 . . . . 5 (𝜑𝑌:𝐷⟶(Base‘𝑅))
101, 2, 7, 9rhmpsrlem2 21903 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ (Base‘𝑅))
1110fmpttd 7124 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))):𝐷⟶(Base‘𝑅))
12 fvex 6909 . . . 4 (Base‘𝑅) ∈ V
13 ovex 7452 . . . . 5 (ℕ0m 𝐼) ∈ V
141, 13rabex2 5337 . . . 4 𝐷 ∈ V
1512, 14elmap 8890 . . 3 ((𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))):𝐷⟶(Base‘𝑅))
1611, 15sylibr 233 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷))
17 eqid 2725 . . 3 (.r𝑅) = (.r𝑅)
18 psrmulcl.t . . 3 · = (.r𝑆)
193, 5, 17, 18, 1, 6, 8psrmulfval 21905 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
20 reldmpsr 21864 . . . . . 6 Rel dom mPwSer
2120, 3, 5elbasov 17190 . . . . 5 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
226, 21syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2322simpld 493 . . 3 (𝜑𝐼 ∈ V)
243, 4, 1, 5, 23psrbas 21895 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m 𝐷))
2516, 19, 243eltr4d 2840 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3418  Vcvv 3461   class class class wbr 5149  cmpt 5232  ccnv 5677  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  r cofr 7684  m cmap 8845  Fincfn 8964  cle 11281  cmin 11476  cn 12245  0cn0 12505  Basecbs 17183  .rcmulr 17237   Σg cgsu 17425  Ringcrg 20185   mPwSer cmps 21854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-tset 17255  df-0g 17426  df-gsum 17427  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-ur 20134  df-ring 20187  df-psr 21859
This theorem is referenced by:  psrmulcl  21908
  Copyright terms: Public domain W3C validator