MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulcllem Structured version   Visualization version   GIF version

Theorem psrmulcllem 21905
Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrmulcl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulcl.b 𝐵 = (Base‘𝑆)
psrmulcl.t · = (.r𝑆)
psrmulcl.r (𝜑𝑅 ∈ Ring)
psrmulcl.x (𝜑𝑋𝐵)
psrmulcl.y (𝜑𝑌𝐵)
psrmulcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrmulcllem (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   · (𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem psrmulcllem
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmulcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 psrmulcl.r . . . . 5 (𝜑𝑅 ∈ Ring)
3 psrmulcl.s . . . . . 6 𝑆 = (𝐼 mPwSer 𝑅)
4 eqid 2735 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
5 psrmulcl.b . . . . . 6 𝐵 = (Base‘𝑆)
6 psrmulcl.x . . . . . 6 (𝜑𝑋𝐵)
73, 4, 1, 5, 6psrelbas 21894 . . . . 5 (𝜑𝑋:𝐷⟶(Base‘𝑅))
8 psrmulcl.y . . . . . 6 (𝜑𝑌𝐵)
93, 4, 1, 5, 8psrelbas 21894 . . . . 5 (𝜑𝑌:𝐷⟶(Base‘𝑅))
101, 2, 7, 9rhmpsrlem2 21901 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ (Base‘𝑅))
1110fmpttd 7105 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))):𝐷⟶(Base‘𝑅))
12 fvex 6889 . . . 4 (Base‘𝑅) ∈ V
13 ovex 7438 . . . . 5 (ℕ0m 𝐼) ∈ V
141, 13rabex2 5311 . . . 4 𝐷 ∈ V
1512, 14elmap 8885 . . 3 ((𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))):𝐷⟶(Base‘𝑅))
1611, 15sylibr 234 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷))
17 eqid 2735 . . 3 (.r𝑅) = (.r𝑅)
18 psrmulcl.t . . 3 · = (.r𝑆)
193, 5, 17, 18, 1, 6, 8psrmulfval 21903 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
20 reldmpsr 21874 . . . . . 6 Rel dom mPwSer
2120, 3, 5elbasov 17235 . . . . 5 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
226, 21syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2322simpld 494 . . 3 (𝜑𝐼 ∈ V)
243, 4, 1, 5, 23psrbas 21893 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m 𝐷))
2516, 19, 243eltr4d 2849 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459   class class class wbr 5119  cmpt 5201  ccnv 5653  cima 5657  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  r cofr 7670  m cmap 8840  Fincfn 8959  cle 11270  cmin 11466  cn 12240  0cn0 12501  Basecbs 17228  .rcmulr 17272   Σg cgsu 17454  Ringcrg 20193   mPwSer cmps 21864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-tset 17290  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-ur 20142  df-ring 20195  df-psr 21869
This theorem is referenced by:  psrmulcl  21906
  Copyright terms: Public domain W3C validator