Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulcllem Structured version   Visualization version   GIF version

Theorem psrmulcllem 20623
 Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrmulcl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulcl.b 𝐵 = (Base‘𝑆)
psrmulcl.t · = (.r𝑆)
psrmulcl.r (𝜑𝑅 ∈ Ring)
psrmulcl.x (𝜑𝑋𝐵)
psrmulcl.y (𝜑𝑌𝐵)
psrmulcl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrmulcllem (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   · (𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem psrmulcllem
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2822 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2822 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrmulcl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
43adantr 484 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
5 ringcmn 19325 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
64, 5syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
7 psrmulcl.x . . . . . . . 8 (𝜑𝑋𝐵)
8 reldmpsr 20597 . . . . . . . . 9 Rel dom mPwSer
9 psrmulcl.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
10 psrmulcl.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
118, 9, 10elbasov 16536 . . . . . . . 8 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
127, 11syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
1312simpld 498 . . . . . 6 (𝜑𝐼 ∈ V)
14 psrmulcl.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1514psrbaglefi 20608 . . . . . 6 ((𝐼 ∈ V ∧ 𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
1613, 15sylan 583 . . . . 5 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
173ad2antrr 725 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
189, 1, 14, 10, 7psrelbas 20615 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1918ad2antrr 725 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
20 simpr 488 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
21 breq1 5045 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦r𝑘𝑥r𝑘))
2221elrab 3655 . . . . . . . . . 10 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↔ (𝑥𝐷𝑥r𝑘))
2320, 22sylib 221 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥𝐷𝑥r𝑘))
2423simpld 498 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
2519, 24ffvelrnd 6834 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
26 psrmulcl.y . . . . . . . . . 10 (𝜑𝑌𝐵)
279, 1, 14, 10, 26psrelbas 20615 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2827ad2antrr 725 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2913ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐼 ∈ V)
30 simplr 768 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
3114psrbagf 20601 . . . . . . . . . . 11 ((𝐼 ∈ V ∧ 𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
3229, 24, 31syl2anc 587 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥:𝐼⟶ℕ0)
3323simprd 499 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥r𝑘)
3414psrbagcon 20607 . . . . . . . . . 10 ((𝐼 ∈ V ∧ (𝑘𝐷𝑥:𝐼⟶ℕ0𝑥r𝑘)) → ((𝑘f𝑥) ∈ 𝐷 ∧ (𝑘f𝑥) ∘r𝑘))
3529, 30, 32, 33, 34syl13anc 1369 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ 𝐷 ∧ (𝑘f𝑥) ∘r𝑘))
3635simpld 498 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
3728, 36ffvelrnd 6834 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
38 eqid 2822 . . . . . . . 8 (.r𝑅) = (.r𝑅)
391, 38ringcl 19305 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
4017, 25, 37, 39syl3anc 1368 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
4140fmpttd 6861 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))):{𝑦𝐷𝑦r𝑘}⟶(Base‘𝑅))
42 fvexd 6667 . . . . . 6 ((𝜑𝑘𝐷) → (0g𝑅) ∈ V)
4341, 16, 42fdmfifsupp 8831 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
441, 2, 6, 16, 41, 43gsumcl 19026 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ (Base‘𝑅))
4544fmpttd 6861 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))):𝐷⟶(Base‘𝑅))
46 fvex 6665 . . . 4 (Base‘𝑅) ∈ V
47 ovex 7173 . . . . 5 (ℕ0m 𝐼) ∈ V
4814, 47rabex2 5213 . . . 4 𝐷 ∈ V
4946, 48elmap 8422 . . 3 ((𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))):𝐷⟶(Base‘𝑅))
5045, 49sylibr 237 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷))
51 psrmulcl.t . . 3 · = (.r𝑆)
529, 10, 38, 51, 14, 7, 26psrmulfval 20621 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
539, 1, 14, 10, 13psrbas 20614 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑m 𝐷))
5450, 52, 533eltr4d 2929 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114  {crab 3134  Vcvv 3469   class class class wbr 5042   ↦ cmpt 5122  ◡ccnv 5531   “ cima 5535  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∘f cof 7392   ∘r cofr 7393   ↑m cmap 8393  Fincfn 8496   ≤ cle 10665   − cmin 10859  ℕcn 11625  ℕ0cn0 11885  Basecbs 16474  .rcmulr 16557  0gc0g 16704   Σg cgsu 16705  CMndccmn 18897  Ringcrg 19288   mPwSer cmps 20587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-tset 16575  df-0g 16706  df-gsum 16707  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-cntz 18438  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-psr 20592 This theorem is referenced by:  psrmulcl  20624
 Copyright terms: Public domain W3C validator