| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrmulcllem | Structured version Visualization version GIF version | ||
| Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrmulcl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrmulcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrmulcl.t | ⊢ · = (.r‘𝑆) |
| psrmulcl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| psrmulcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psrmulcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| psrmulcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrmulcllem | ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrmulcl.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | psrmulcl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 3 | psrmulcl.s | . . . . . 6 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | psrmulcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | psrmulcl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 3, 4, 1, 5, 6 | psrelbas 21866 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 8 | psrmulcl.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 3, 4, 1, 5, 8 | psrelbas 21866 | . . . . 5 ⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
| 10 | 1, 2, 7, 9 | rhmpsrlem2 21873 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ (Base‘𝑅)) |
| 11 | 10 | fmpttd 7043 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))):𝐷⟶(Base‘𝑅)) |
| 12 | fvex 6830 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
| 13 | ovex 7374 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 14 | 1, 13 | rabex2 5274 | . . . 4 ⊢ 𝐷 ∈ V |
| 15 | 12, 14 | elmap 8790 | . . 3 ⊢ ((𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))):𝐷⟶(Base‘𝑅)) |
| 16 | 11, 15 | sylibr 234 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) ∈ ((Base‘𝑅) ↑m 𝐷)) |
| 17 | eqid 2731 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 18 | psrmulcl.t | . . 3 ⊢ · = (.r‘𝑆) | |
| 19 | 3, 5, 17, 18, 1, 6, 8 | psrmulfval 21875 | . 2 ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
| 20 | reldmpsr 21846 | . . . . . 6 ⊢ Rel dom mPwSer | |
| 21 | 20, 3, 5 | elbasov 17122 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 22 | 6, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 23 | 22 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 24 | 3, 4, 1, 5, 23 | psrbas 21865 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑m 𝐷)) |
| 25 | 16, 19, 24 | 3eltr4d 2846 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 class class class wbr 5086 ↦ cmpt 5167 ◡ccnv 5610 “ cima 5614 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ∘r cofr 7604 ↑m cmap 8745 Fincfn 8864 ≤ cle 11142 − cmin 11339 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 .rcmulr 17157 Σg cgsu 17339 Ringcrg 20146 mPwSer cmps 21836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-tset 17175 df-0g 17340 df-gsum 17341 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-ur 20095 df-ring 20148 df-psr 21841 |
| This theorem is referenced by: psrmulcl 21878 |
| Copyright terms: Public domain | W3C validator |