MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulcllem Structured version   Visualization version   GIF version

Theorem psrmulcllem 19788
Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrmulcl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulcl.b 𝐵 = (Base‘𝑆)
psrmulcl.t · = (.r𝑆)
psrmulcl.r (𝜑𝑅 ∈ Ring)
psrmulcl.x (𝜑𝑋𝐵)
psrmulcl.y (𝜑𝑌𝐵)
psrmulcl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrmulcllem (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   · (𝑓)   𝑋(𝑓)   𝑌(𝑓)

Proof of Theorem psrmulcllem
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2778 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrmulcl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
43adantr 474 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
5 ringcmn 18972 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
64, 5syl 17 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
7 psrmulcl.x . . . . . . . 8 (𝜑𝑋𝐵)
8 reldmpsr 19762 . . . . . . . . 9 Rel dom mPwSer
9 psrmulcl.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
10 psrmulcl.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
118, 9, 10elbasov 16321 . . . . . . . 8 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
127, 11syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
1312simpld 490 . . . . . 6 (𝜑𝐼 ∈ V)
14 psrmulcl.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1514psrbaglefi 19773 . . . . . 6 ((𝐼 ∈ V ∧ 𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
1613, 15sylan 575 . . . . 5 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
173ad2antrr 716 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ Ring)
189, 1, 14, 10, 7psrelbas 19780 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1918ad2antrr 716 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
20 simpr 479 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘})
21 breq1 4891 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝑟𝑘𝑥𝑟𝑘))
2221elrab 3572 . . . . . . . . . 10 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↔ (𝑥𝐷𝑥𝑟𝑘))
2320, 22sylib 210 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑥𝐷𝑥𝑟𝑘))
2423simpld 490 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥𝐷)
2519, 24ffvelrnd 6626 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
26 psrmulcl.y . . . . . . . . . 10 (𝜑𝑌𝐵)
279, 1, 14, 10, 26psrelbas 19780 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2827ad2antrr 716 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
2913ad2antrr 716 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐼 ∈ V)
30 simplr 759 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑘𝐷)
3114psrbagf 19766 . . . . . . . . . . 11 ((𝐼 ∈ V ∧ 𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
3229, 24, 31syl2anc 579 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥:𝐼⟶ℕ0)
3323simprd 491 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥𝑟𝑘)
3414psrbagcon 19772 . . . . . . . . . 10 ((𝐼 ∈ V ∧ (𝑘𝐷𝑥:𝐼⟶ℕ0𝑥𝑟𝑘)) → ((𝑘𝑓𝑥) ∈ 𝐷 ∧ (𝑘𝑓𝑥) ∘𝑟𝑘))
3529, 30, 32, 33, 34syl13anc 1440 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑘𝑓𝑥) ∈ 𝐷 ∧ (𝑘𝑓𝑥) ∘𝑟𝑘))
3635simpld 490 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ 𝐷)
3728, 36ffvelrnd 6626 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅))
38 eqid 2778 . . . . . . . 8 (.r𝑅) = (.r𝑅)
391, 38ringcl 18952 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
4017, 25, 37, 39syl3anc 1439 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
4140fmpttd 6651 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))):{𝑦𝐷𝑦𝑟𝑘}⟶(Base‘𝑅))
42 fvexd 6463 . . . . . 6 ((𝜑𝑘𝐷) → (0g𝑅) ∈ V)
4341, 16, 42fdmfifsupp 8575 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
441, 2, 6, 16, 41, 43gsumcl 18706 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ (Base‘𝑅))
4544fmpttd 6651 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))):𝐷⟶(Base‘𝑅))
46 fvex 6461 . . . 4 (Base‘𝑅) ∈ V
47 ovex 6956 . . . . 5 (ℕ0𝑚 𝐼) ∈ V
4814, 47rabex2 5053 . . . 4 𝐷 ∈ V
4946, 48elmap 8171 . . 3 ((𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))):𝐷⟶(Base‘𝑅))
5045, 49sylibr 226 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) ∈ ((Base‘𝑅) ↑𝑚 𝐷))
51 psrmulcl.t . . 3 · = (.r𝑆)
529, 10, 38, 51, 14, 7, 26psrmulfval 19786 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
539, 1, 14, 10, 13psrbas 19779 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑𝑚 𝐷))
5450, 52, 533eltr4d 2874 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  {crab 3094  Vcvv 3398   class class class wbr 4888  cmpt 4967  ccnv 5356  cima 5360  wf 6133  cfv 6137  (class class class)co 6924  𝑓 cof 7174  𝑟 cofr 7175  𝑚 cmap 8142  Fincfn 8243  cle 10414  cmin 10608  cn 11378  0cn0 11646  Basecbs 16259  .rcmulr 16343  0gc0g 16490   Σg cgsu 16491  CMndccmn 18583  Ringcrg 18938   mPwSer cmps 19752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-ofr 7177  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-uz 11997  df-fz 12648  df-fzo 12789  df-seq 13124  df-hash 13440  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-plusg 16355  df-mulr 16356  df-sca 16358  df-vsca 16359  df-tset 16361  df-0g 16492  df-gsum 16493  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-grp 17816  df-minusg 17817  df-cntz 18137  df-cmn 18585  df-abl 18586  df-mgp 18881  df-ur 18893  df-ring 18940  df-psr 19757
This theorem is referenced by:  psrmulcl  19789
  Copyright terms: Public domain W3C validator